【題目】有下列四個(gè)命題:
①“若a2+b2=0,則a,b全為0”的逆否命題是“若a,b全不為0,則a2+b2≠0”
②若事件A與事件B互斥,則P(A∪B)=P(A)+P(B);
③在△ABC中,“A<B”是“sinA<sinB”成立的充要條件;
④若α、β是兩個(gè)相交平面,直線mα,則在平面β內(nèi),一定存在與直線m平行的直線.
上述命題中,其中真命題的序號(hào)是_____.
【答案】②③.
【解析】
寫出原命題的逆否命題,可判斷①;通過(guò)與互斥,判斷(A)(B)的正誤;由三角形中的邊角關(guān)系、正弦定理及充分必要條件判定方法判斷③;由直線為兩平面的交線時(shí),結(jié)論成立,可判斷④.
對(duì)于①,“,則,全為0”的逆否命題是“若,不全為0,則”,故①錯(cuò)誤;
對(duì)于②,滿足互斥事件的概率求和的方法,所以②為真命題;
對(duì)于③,在中,,命題“在中,是成立的充要條件,故③正確;
對(duì)于④,若直線,當(dāng)直線為兩平面的交線時(shí),在平面內(nèi),一定存在與直線平行的直線,故④不正確;
故答案為:②③
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 的離心率為,兩焦點(diǎn)與短軸的一個(gè)端點(diǎn)的連線構(gòu)成的三角形面積為.
(I)求橢圓的方程;
(II)設(shè)與圓相切的直線交橢圓于,兩點(diǎn)(為坐標(biāo)原點(diǎn)),的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,三棱柱中,底面是等邊三角形,側(cè)面是矩形,是的中點(diǎn),是棱上的點(diǎn),且.
(1)證明:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC的內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,bsinA=cosB.
(1)求角B的大;
(2)若b=2,△ABC的面積為,求a,c.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,設(shè)橢圓1的左右焦點(diǎn)分別為F1、F2,過(guò)焦點(diǎn)F1的直線交橢圓于A、B兩點(diǎn),若△ABF2的內(nèi)切圓的面積為4,設(shè)A、B兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則|y1﹣y2|值為_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了調(diào)查民眾對(duì)國(guó)家實(shí)行“新農(nóng)村建設(shè)”政策的態(tài)度,現(xiàn)通過(guò)網(wǎng)絡(luò)問卷隨機(jī)調(diào)查了年齡在20周歲至80周歲的100人,他們年齡頻數(shù)分布和支持“新農(nóng)村建設(shè)”人數(shù)如下表:
(1)根據(jù)上述統(tǒng)計(jì)數(shù)據(jù)填下面的2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為以50歲為分界點(diǎn)對(duì)“新農(nóng)村建設(shè)”政策的支持度有差異;
(2)現(xiàn)從年齡在[70,80]內(nèi)的5名被調(diào)查人中任選兩人去參加座談會(huì),求選出兩人中恰有一人支持新農(nóng)村建設(shè)的概率.
參考數(shù)據(jù):
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知極坐標(biāo)系的極點(diǎn)在平面直角坐標(biāo)系的原點(diǎn)處,極軸與軸的非負(fù)半軸重合,且長(zhǎng)度單位相同,直線的極坐標(biāo)方程為,曲線(為參數(shù)).其中.
(1)試寫出直線的直角坐標(biāo)方程及曲線的普通方程;
(2)若點(diǎn)為曲線上的動(dòng)點(diǎn),求點(diǎn)到直線距離的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】中國(guó)古代數(shù)學(xué)名著《九章算術(shù)》中有這樣一個(gè)問題:今有牛、馬、羊食人苗,苗主責(zé)之粟五斗,羊主曰:“我羊食半馬.”馬主曰:“我馬食半牛.”今欲衰償之,問各出幾何?此問題的譯文是:今有牛、馬、羊吃了別人的禾苗,禾苗主人要求賠償5斗粟.羊主人說(shuō):“我羊所吃的禾苗只有馬的一半.”馬主人說(shuō):“我馬所吃的禾苗只有牛的一半.”打算按此比例償還,他們各應(yīng)償還多少?已知牛、馬、羊的主人各應(yīng)償還升, 升, 升,1斗為10升,則下列判斷正確的是( )
A. , , 依次成公比為2的等比數(shù)列,且
B. , , 依次成公比為2的等比數(shù)列,且
C. , , 依次成公比為的等比數(shù)列,且
D. , , 依次成公比為的等比數(shù)列,且
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com