14.若m是2和8的等比中項(xiàng),且m<0,則圓錐曲線x2+$\frac{{y}^{2}}{m}$=1的離心率是(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{5}$C.$\frac{\sqrt{3}}{2}$ 或  $\frac{\sqrt{5}}{2}$D.$\frac{\sqrt{3}}{2}$或$\sqrt{5}$

分析 先根據(jù)等比中項(xiàng)的性質(zhì)求得m的值,m<0,曲線為雙曲線,求得a,b和c,則離心率可得.最后綜合答案即可.

解答 解:依題意可知m=±4
∵m<0,∴m=-4,
曲線為雙曲線,a=1,b=2,c=$\sqrt{5}$,則e=$\sqrt{5}$
故選B.

點(diǎn)評(píng) 本題主要考查了圓錐曲線的問(wèn)題,考查了學(xué)生對(duì)圓錐曲線基礎(chǔ)知識(shí)的綜合運(yùn)用,對(duì)基礎(chǔ)的把握程度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.雙曲線與橢圓$\frac{{y}^{2}}{40}$+$\frac{{x}^{2}}{15}$=1有共同的焦點(diǎn),點(diǎn)P(3,4)在雙曲線的漸近線上,求雙曲線的標(biāo)準(zhǔn)方程和離心率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.△ABC中,A=60°,AB=3,AC=2,D是AC邊的中點(diǎn),點(diǎn)E在AB邊上,且AE=$\frac{1}{2}$EB,BD與CE交于點(diǎn)M,N是BC的中點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{AN}$=$\frac{13}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.滿足M⊆{2,5,7,9},且M∩{2,5,7}={2,5}的集合M的個(gè)數(shù)是( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.甲、乙兩位同學(xué)玩“爭(zhēng)上游”游戲,若甲有三張牌2、3、6,乙有三張牌1、4、5.
(Ⅰ)若兩人隨機(jī)各出一張牌,求甲的點(diǎn)數(shù)比乙的點(diǎn)數(shù)大的概率;
(Ⅱ)若兩人各不放回地出牌三次,規(guī)定一方至少有兩次點(diǎn)數(shù)大于另一方者獲勝; 假設(shè)乙知道甲第一次出最大的牌,問(wèn)乙應(yīng)如何出牌,才能使自己獲勝.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知f(x)=$\frac{1+sinx+cosx+2sinxcosx}{1+sinx+cosx}$-cosx,
(1)求f(x)的周期及f($\frac{π}{4}$);
(2)若f(α)+cosα=$\frac{1}{5}$,α∈(0,π),求cosα-sinα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知拋物線C以直線2x-3y+6=0與坐標(biāo)軸的交點(diǎn)為焦點(diǎn),
(1)求拋物線C的標(biāo)準(zhǔn)方程;
(2)設(shè)(1)中焦點(diǎn)在x軸上的拋物線為C1,直線l過(guò)點(diǎn)P(0,2)且與拋物線C1相切,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.在公差不為0的等差數(shù)列{an}中,a3+a10=15,且a2,a5,a11成等比數(shù)列.
(1)求{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.記[x]表示不超過(guò)x的最大整數(shù),如[1.3]=1,[-1.3]=-2.設(shè)函數(shù)f(x)=x-[x],若方程1-f(x)=logax有且僅有3個(gè)實(shí)數(shù)根,則正實(shí)數(shù)a的取值范圍為( 。
A.(3,4]B.[3,4)C.[2,3)D.(2,3]

查看答案和解析>>

同步練習(xí)冊(cè)答案