【題目】在三棱錐S﹣ABC中,△ABC是邊長(zhǎng)為2 的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點(diǎn).
(1)證明:AC⊥SB;
(2)求三棱錐B﹣CMN的體積.
【答案】
(1)證明:取AC中點(diǎn)D,連接SD,DB.
因?yàn)镾A=SC,AB=BC,所以AC⊥SD且AC⊥BD,
因?yàn)镾D∩BD=D,所以AC⊥平面SDB.
又SB平面SDB,所以AC⊥SB
(2)解:因?yàn)锳C⊥平面SDB,AC平面ABC,所以平面SDC⊥平面ABC.
過(guò)N作NE⊥BD于E,則NE⊥平面ABC,
因?yàn)槠矫鍿AC⊥平面ABC,SD⊥AC,所以SD⊥平面ABC.
又因?yàn)镹E⊥平面ABC,所以NE∥SD.
由于SN=NB,所以NE= SD=
所以S△CMB= CMBM=
所以VB﹣CMN=VN﹣CMB= S△CMBNE= =
【解析】(1)取AC 中點(diǎn)D,連接SD,DB,證明AC⊥平面SDB,由線面垂直的性質(zhì)可得AC⊥SB;(2)由VB﹣CMN=VN﹣CMB , 即可求得三棱錐B﹣CMN的體積.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用直線與平面垂直的性質(zhì)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握垂直于同一個(gè)平面的兩條直線平行.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某乒乓球俱樂部派甲、乙、丙三名運(yùn)動(dòng)員參加某運(yùn)動(dòng)會(huì)的個(gè)人單打資格選拔賽,本次選拔賽只有出線和未出線兩種情況.若一個(gè)運(yùn)動(dòng)員出線記分,未出線記分.假設(shè)甲、乙、丙出線的概率分別為,他們出線與未出線是相互獨(dú)立的.
(1)求在這次選拔賽中,這三名運(yùn)動(dòng)員至少有一名出線的概率;
(2)記在這次選拔賽中,甲、乙、丙三名運(yùn)動(dòng)員所得分之和為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市在對(duì)學(xué)生的綜合素質(zhì)評(píng)價(jià)中,將其測(cè)評(píng)結(jié)果分為“優(yōu)秀、合格、不合格”三個(gè)等級(jí),其中不小于80分為“優(yōu)秀”,小于60分為“不合格”,其它為“合格”.
(1)某校高二年級(jí)有男生500人,女生400人,為了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣的方法從高二學(xué)生中抽取了90名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,其各個(gè)等級(jí)的頻數(shù)統(tǒng)計(jì)如表:
等級(jí) | 優(yōu)秀 | 合格 | 不合格 |
男生(人) | 30 | x | 8 |
女生(人) | 30 | 6 | y |
根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有90%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?
男生 | 女生 | 總計(jì) | |
優(yōu)秀 | |||
非優(yōu)秀 | |||
總計(jì) |
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(2)以(1)中抽取的90名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)的頻率作為全市各個(gè)評(píng)價(jià)等級(jí)發(fā)生的概率,且每名學(xué)生是否“優(yōu)秀”相互獨(dú)立,現(xiàn)從該市高二學(xué)生中隨機(jī)抽取4人.
(i)求所選4人中恰有3人綜合素質(zhì)評(píng)價(jià)為“優(yōu)秀”的概率;
(ii)記X表示這4人中綜合素質(zhì)評(píng)價(jià)等級(jí)為“優(yōu)秀”的人數(shù),求X的數(shù)學(xué)期望.
附:參考數(shù)據(jù)與公式
參考公式:K2= ,其中n=a+b+c+d.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓的方程為(x﹣1)2+(y﹣1)2=1,P點(diǎn)坐標(biāo)為(2,3), 求:
(1)過(guò)P點(diǎn)的圓的切線長(zhǎng).
(2)過(guò)P點(diǎn)的圓的切線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R).
(1)若函數(shù)y=f(x)的零點(diǎn)為﹣1和1,求實(shí)數(shù)b,c的值;
(2)若f(x)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(﹣3,﹣2),(0,1)內(nèi),求實(shí)數(shù)b的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0.
(1)判斷直線l與圓C的位置關(guān)系;
(2)若定點(diǎn)P(1,1)分弦AB為 = ,求此時(shí)直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),.
(Ⅰ)函數(shù)的圖象與的圖象無(wú)公共點(diǎn),求實(shí)數(shù)的取值范圍;
(Ⅱ)是否存在實(shí)數(shù),使得對(duì)任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請(qǐng)求出整數(shù)的最大值;若不存在,請(qǐng)說(shuō)理由.
(參考數(shù)據(jù):,,).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)f(a)=|x2-a2|dx
(1)當(dāng)0≤a≤1與a>1時(shí),分別求f(a);
(2)當(dāng)a≥0時(shí),求f(a)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四棱錐中,底面為菱形, 底面, , 是上的一點(diǎn),PE=2EC, 為的中點(diǎn).
(1)證明: 平面;
(2)證明: 平面.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com