已知直線lykx+2(k為常數(shù))過橢圓=1(ab>0)的上頂點B和左焦點F,直線l被圓x2y2=4截得的弦長為d.
(1)若d=2,求k的值;
(2)若d,求橢圓離心率e的取值范圍.

(1)(2)0<e≤.

解析試題分析:解:(1)取弦的中點為M,連結(jié)OM由平面幾何知識,OM=1,

OM==1.解得k2=3,k.
∵直線過F、B,∴k>0,則k=.
(2)設(shè)弦的中點為M,連結(jié)OM,則OM2=,
d2=4(4-)≥()2,解得k2.
e2=,∴0<e≤.
考點:橢圓的性質(zhì)
點評:解決的關(guān)鍵是利用距離公式以及平面幾何知識來得到不等式,點在橢圓內(nèi),求解k的范圍,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

如圖,已知圓C與y軸相切于點T(0,2),與x軸正半軸相交于兩點M,N  (點M在點N的右側(cè)),且。橢圓D:的焦距等于,且過點

( I ) 求圓C和橢圓D的方程;
(Ⅱ) 若過點M的動直線與橢圓D交于A、B兩點,若點N在以弦AB為直徑的圓的外部,求直線斜率的范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

在直角坐標(biāo)系中,曲線的參數(shù)方程為為參數(shù))。
若以直角坐標(biāo)系的原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(其中為常數(shù))
(1)當(dāng)時,曲線與曲線有兩個交點.求的值;
(2)若曲線與曲線只有一個公共點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

中心在坐標(biāo)原點,焦點在軸上的橢圓的離心率為,且經(jīng)過點。若分別過橢圓的左右焦點、的動直線、相交于P點,與橢圓分別交于A、B與C、D不同四點,直線OA、OB、OC、OD的斜率、滿足

(1)求橢圓的方程;
(2)是否存在定點M、N,使得為定值.若存在,求出M、N點坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)橢圓的離心率為,點、,原點到直線的距離為
(1)求橢圓的方程;
(2)設(shè)點,點在橢圓上(與、均不重合),點在直線上,若直線的方程為,且,試求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

若雙曲線的離心率等于,直線與雙曲線的右支交于兩點.
(1)求的取值范圍;
(2)若,點是雙曲線上一點,且,求

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

過拋物線的焦點作傾斜角為的直線交拋物線于、兩點,過點作拋物線的切線軸于點,過點作切線的垂線交軸于點。

(1) 若,求此拋物線與線段以及線段所圍成的封閉圖形的面積。
(2) 求證:;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題


已知拋物線和橢圓都經(jīng)過點,它們在軸上有共同焦點,橢圓的對稱軸是坐標(biāo)軸,拋物線的頂點為坐標(biāo)原點.
(1)求這兩條曲線的方程;
(2)對于拋物線上任意一點,點都滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

直線與橢圓交于,兩點,已知
,,若且橢圓的離心率,又橢圓經(jīng)過點,
為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線過橢圓的焦點為半焦距),求直線的斜率的值;

查看答案和解析>>

同步練習(xí)冊答案