9.若關于x的不等式ax2+bx+2>0的解集是{x|x<-2或x>-1},則a+b=4.

分析 由題意可得-1和-2是方程ax2+bx+2=0的兩個根,利用一元二次方程根與系數(shù)的關系,求出a、b的值,再計算a+b的值.

解答 解:因為關于x的不等式ax2+bx+2>0的解集為{x|x<-2或x>-1},
所以-2和-1是方程ax2+bx+2=0的兩個根,且a>0,
由韋達定理可得-1-2=-$\frac{a}$,
-1×(-2)=$\frac{2}{a}$,
解得a=1,b=3,
所以a+b=4.
故答案為:4.

點評 本題考查一元二次方程的根與系數(shù)的關系,一元二次不等式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

11.如圖,在正方體ABCD-A1B1C1D1中,已知M、N分別為棱AD、BB1的中點.
(1)求證:直線MN∥平面AB1D1;
(2)若正方體的棱長a=2,求點A1到面AB1D1的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.給出下面類比推理:
①“若2a<2b,則a<b”類比推出“若a2<b2,則a<b”;
②“(a+b)c=ac+bc(c≠0)”類比推出“$\frac{a+b}{c}$=$\frac{a}{c}$+$\frac{c}$(c≠0)”;
③“a,b∈R,若a-b=0,則a=b”類比推出“a,b∈C,若a-b=0,則a=b”;
④“a,b∈R,若a-b>0,則a>b”類比推出“a,b∈C,若a-b>0,則a>b(C為復數(shù)集)”.
其中結論正確的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知數(shù)列{an}中,a1=1,a1+2a2+3a3+…+nan=$\frac{n+1}{2}{{a}_{n+1}}$(n∈N*
(Ⅰ)證明當n≥2時,數(shù)列{nan}是等比數(shù)列,并求數(shù)列{an}的通項an
(Ⅱ)求數(shù)列{n2an}的前n項和Tn;
(Ⅲ)對任意n∈N*,使得$\frac{n}{{{3}^{n-1}}}{{a}_{n+1}}$≤(n+6)λ 恒成立,求實數(shù)λ的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.已知集合A={x|x2+x-2<0},B={x|x>-1},則集合A∩B等于( 。
A.{x|x>-2}B.B={x|-1<x<1}C.B={x|x<1}D.B={x|-1<x<2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)分別求:∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆A,求實數(shù)a的取值集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.如果a2>b2,那么下列不等式中正確的是( 。
A.a>0>bB.a>b>0C.|a|>|b|D.a>|b|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.復數(shù)z=$\frac{3-{i}^{2015}}{1+i}$的共軛復數(shù)$\overline{z}$等于( 。
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設數(shù)列{an}的首項a1為常數(shù),且an+1=3n-2an,(n∈N*
(1)證明:{an-$\frac{{3}^{n}}{5}$}是等比數(shù)列;
(2)若a1=$\frac{3}{2}$,{an}中是否存在連續(xù)三項成等差數(shù)列?若存在,寫出這三項,若不存在說明理由.
(3)若{an}是遞增數(shù)列,求a1的取值范圍.

查看答案和解析>>

同步練習冊答案