已知二次函數(shù)的導(dǎo)數(shù),且的值域為,則的最小值為(   )
A.3B.C.2D.
C

試題分析:由已知,因為,所以,又的值域為,所以,并且,即,則,當(dāng)且僅當(dāng)時,等號成立.故正確答案為C.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù).
(1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;
(2)當(dāng)時,若恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知a,b為常數(shù),a¹0,函數(shù)
(1)若a=2,b=1,求在(0,+∞)內(nèi)的極值;
(2)①若a>0,b>0,求證:在區(qū)間[1,2]上是增函數(shù);
②若,且在區(qū)間[1,2]上是增函數(shù),求由所有點形成的平面區(qū)域的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)為常數(shù)),其圖象是曲線
(1)當(dāng)時,求函數(shù)的單調(diào)減區(qū)間;
(2)設(shè)函數(shù)的導(dǎo)函數(shù)為,若存在唯一的實數(shù),使得同時成立,求實數(shù)的取值范圍;
(3)已知點為曲線上的動點,在點處作曲線的切線與曲線交于另一點,在點處作曲線的切線,設(shè)切線的斜率分別為.問:是否存在常數(shù),使得?若存在,求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=2ax--(2+a)lnx(a≥0)
(Ⅰ)當(dāng)時,求的極值;
(Ⅱ)當(dāng)a>0時,討論的單調(diào)性;
(Ⅲ)若對任意的a∈(2,3),x­1,x2∈[1,3],恒有成立,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù),f '(x)為f(x)的導(dǎo)函數(shù),若f '(x)是偶函數(shù)且f '(1)=0.
⑴求函數(shù)的解析式;
⑵若對于區(qū)間上任意兩個自變量的值,都有,求實數(shù)的最小值;
⑶若過點,可作曲線的三條切線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)的圖象在上連續(xù),定義:.其中,表示函數(shù)上的最小值,表示函數(shù)上的最大值.若存在最小正整數(shù),使得對任意的成立,則稱函數(shù)上的“階收縮函數(shù)”.
(Ⅰ)若,試寫出,的表達(dá)式;
(Ⅱ)已知函數(shù),試判斷是否為上的“階收縮函數(shù)”.如果是,求出對應(yīng)的;如果不是,請說明理由;
(Ⅲ)已知,函數(shù)上的2階收縮函數(shù),求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若點P是函數(shù)圖象上任意一點,且在點P處切線的傾斜角為,則的最小值是(   )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)的導(dǎo)函數(shù)圖象如圖所示,若為銳角三角形,則一定成立的是(  )
A.B.
C.D.

查看答案和解析>>

同步練習(xí)冊答案