【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若 ,則 =

【答案】
【解析】解:∵ ,

∴由正弦定理可得: sinBcosA﹣sinCcosA=sinAcosC,

sinBcosA=sinAcosC+sinCcosA=sin(A+C)=sinB,

∵B為三角形內(nèi)角,sinB≠0,

∴cosA= ,可得sinA= = ,tanA= = ,

= = =

故答案為:

由已知及正弦定理,三角形內(nèi)角和定理,兩角和的正弦函數(shù)公式可得: sinBcosA=sinB,結(jié)合sinB≠0,可求cosA,利用同角三角函數(shù)基本關(guān)系式可求sinA,tanA,進(jìn)而利用兩角差的正切函數(shù)公式即可計(jì)算得解.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),當(dāng)時(shí),恒有當(dāng)時(shí),

求證: 是奇函數(shù);

,試求在區(qū)間上的最值;

)是否存在,使對(duì)于任意恒成立若存在,求出實(shí)數(shù)的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)
(Ⅰ)求曲線 在點(diǎn) 處的切線方程;
(Ⅱ)若 對(duì) 恒成立,求實(shí)數(shù) 的取值范圍;
(Ⅲ)求整數(shù) 的值,使函數(shù) 在區(qū)間 上有零點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)是定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=log2x,g(x)=2log2(2x+a),a∈R
(1)求函數(shù)f(x)的解析式;
(2)若對(duì)任意x∈[1,4],f(4x)≤g(x),求實(shí)數(shù)a的取值范圍;
(3)設(shè)a>﹣2,求函數(shù)h(x)=g(x)﹣f(x),x∈[1,2]的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1過點(diǎn)A(0,1),l2過點(diǎn)B(5,0),如果l1l2,且l1與l2的距離為5,求l1、l2的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:函數(shù)fx= a>0a≠1.

(Ⅰ)求函數(shù)fx)的定義域;

(Ⅱ)判斷函數(shù)fx)的奇偶性,并加以證明;

(Ⅲ)設(shè)a=,解不等式fx>0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四棱錐中,底面是邊長為1的正方形,側(cè)棱底面,且, 是側(cè)棱上的動(dòng)點(diǎn).

(1)求四棱錐的表面積;

(2)是否在棱上存在一點(diǎn),使得平面;若存在,指出點(diǎn)的位置,并證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若存在不為零的常數(shù),使得函數(shù)對(duì)定義域內(nèi)的任一均有,則稱函數(shù)為周期函數(shù),其中常數(shù)就是函數(shù)的一個(gè)周期.

(1)證明:若存在不為零的常數(shù)使得函數(shù) 對(duì)定義域內(nèi)的任一均有,則此函數(shù)是周期函數(shù).

(2)若定義在上的奇函數(shù)滿足,試探究此函數(shù)在區(qū)間

內(nèi)零點(diǎn)的最少個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了調(diào)查喜歡語文學(xué)科與性別的關(guān)系,隨機(jī)調(diào)查了一些學(xué)生情況,具體數(shù)據(jù)如表:

調(diào)查統(tǒng)計(jì)

不喜歡語文

喜歡語文

13

10

7

20

為了判斷喜歡語文學(xué)科是否與性別有關(guān)系,根據(jù)表中的數(shù)據(jù),得到K2的觀測值k= ≈4.844,因?yàn)閗≥3.841,根據(jù)下表中的參考數(shù)據(jù):

P(K2≥k0

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

判定喜歡語文學(xué)科與性別有關(guān)系,那么這種判斷出錯(cuò)的可能性為(
A.95%
B.50%
C.25%
D.5%

查看答案和解析>>

同步練習(xí)冊答案