【題目】

  1. (2015·四川)如果函數(shù)f(x)=(m-2)x2+(n-8)x+1(m≥0, n≥0)在區(qū)間[, 2]上單調(diào)遞減,則mn的最大值為( )


A.16
B.18
C.25
D.

【答案】B
【解析】m≠2時(shí), 拋物線的對(duì)稱軸為x=-, 據(jù)題意,當(dāng)m>2時(shí),-≥2即2m+n≤12, ∵≤6, ∴mn≤18, 由2m=n且2m+n=12得m=3, n=6, 當(dāng),m<2時(shí), 拋物線開口向下, 根據(jù)題意, -即m+2n≤18, ∵≤9, ∴mn≤, 由2n=m且m+2n=18得m=9>2, 故應(yīng)舍去使得mn取得最大值,應(yīng)有m+2n=18(m<2,n>8), 所以mn=(18-2n)n<(18-2x8)x8=16, 所以最大值為18. 選B
【考點(diǎn)精析】本題主要考查了二次函數(shù)的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握當(dāng)時(shí),拋物線開口向上,函數(shù)在上遞減,在上遞增;當(dāng)時(shí),拋物線開口向下,函數(shù)在上遞增,在上遞減才能正確解答此題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在正方體中,點(diǎn)是棱上的一個(gè)動(dòng)點(diǎn),平面交棱于點(diǎn)給出下列命題:

①存在點(diǎn),使得//平面

對(duì)于任意的點(diǎn),平面平面;

存在點(diǎn),使得平面;

④對(duì)于任意的點(diǎn),四棱錐的體積均不變.

其中正確命題的序號(hào)是______.(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)a,b,c是△ABC的三邊,P: , Q:方程x2 +2ax+b2 = 0與方程x2 +2cx-b2 = 0有公共根. 則P是Q的_____.(填:充分不必要條件,必要而不充分條件,充要條件,既不充分也不必要條件)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)=xlnx﹣ax2+(2a﹣1)x,a∈R.
(1)令g(x)=f′(x),求g(x)的單調(diào)區(qū)間;
(2)已知f(x)在x=1處取得極大值,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方體ABCD—A1B1C1D1,

則下列四個(gè)命題:

P在直線BC1上運(yùn)動(dòng)時(shí),三棱錐A—D1PC的體積不變;

P在直線BC1上運(yùn)動(dòng)時(shí),直線AP與平面ACD1所成角的大小不變;

P在直線BC1上運(yùn)動(dòng)時(shí),二面角P—AD1—C的大小不變;

M是平面A1B1C1D1上到點(diǎn)D和C1距離相等的點(diǎn),則M點(diǎn)的軌跡是過D1點(diǎn)的直線D1A1。

其中真命題的編號(hào)是 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓經(jīng)過點(diǎn)、,并且直線平分圓.

)求圓的方程;

)若過點(diǎn),且斜率為的直線與圓有兩個(gè)不同的交點(diǎn).

)求實(shí)數(shù)的取值范圍;

)若,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2﹣ax﹣1(a∈R).
(1)若對(duì)任意實(shí)數(shù)x,f(x)<0恒成立,求實(shí)數(shù)a的取值范圍;
(2)當(dāng)a>0時(shí),解關(guān)于x的不等式f(x)<2x﹣3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知中心在原點(diǎn),焦點(diǎn)在軸上的橢圓過點(diǎn),離心率為.

1)求橢圓的方程;

2)直線過橢圓的左焦點(diǎn),且與橢圓交于兩點(diǎn),若的面積為,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,橢圓的左右頂點(diǎn)分別是,為直線上一點(diǎn)(點(diǎn)在軸的上方),直線與橢圓的另一個(gè)交點(diǎn)為,直線與橢圓的另一個(gè)交點(diǎn)為.

(1)若的面積是的面積的,求直線的方程;

(2)設(shè)直線與直線的斜率分別為,求證:為定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案