定義運算:a*b=
a,(ab>0)
b,(ab≤0)
,則函數(shù)f(x)=x*
1
x-1
的值域為
 
考點:函數(shù)的值域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由新定義確定分段函數(shù)在各段上f(x)的表達式,畫函數(shù)的圖象,從而求出值域.
解答: 解:由題意,
①當x×
1
x-1
>0時,也即x<0\或x>1時,函數(shù)f(x)=x;
①當x×
1
x-1
≤0時,也即0≤x<1時,函數(shù)f(x)=
1
x-1
;
函數(shù)f(x)的圖象:

從圖象上得知:函數(shù)f(x)的值域是(-∞,0)∪(1,+∞).
故答案為:(-∞,0)∪(1,+∞).
點評:考查了函數(shù)的值域的求法,同時考查了學(xué)生對新定義的接受能力,屬于基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學(xué) 來源: 題型:

如果曲線C上任意一點的坐標都是方程F(x,y)=0的解,那么下列命題正確的是( 。
A、曲線C的方程是F(x,y)=0
B、曲線C上的點都在方程F(x,y)=0的曲線上
C、方程F(x,y)=0的曲線是C
D、以方程F(x,y)=0解為坐標點都在曲線C上

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在四棱錐P-ABCD中,E為AD上一點,PE⊥平面ABCD,AD∥BC,AD⊥CD,BC=ED=2AE,F(xiàn)為PC上一點,且CF=2FP. 
(Ⅰ)求證:PA∥平面BEF;
(Ⅱ)求三棱錐P-ABF與三棱錐F-EBC的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l1:(m+1)x-(m-a)y+2=0,直線l2:3x+my-1=0,且l1⊥l2,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=alog2x+blog4x+2,且f(
1
2014
)=4,則f(2014)的值為( 。
A、-4B、2C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx+3x2-6在區(qū)間(1,2)上存在零點,若用二分法分析函數(shù)的零點,則下一步確定函數(shù)零點所在的區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求傾斜角為45°,且與點(2,-1)的距離為
2
2
的直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題甲:若x,y∈R,則|x|>1是x>1是充分而不必要條件;命題乙:函數(shù)y=
|x-1|-2
的定義域是(-∞,-1]∪[3,+∞),則( 。
A、“甲或乙”為假
B、“甲且乙”為真
C、甲真乙假
D、甲假乙真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
(a-3)x+2,x≤1
-x2+(a2-4)x-8,x>1
是單調(diào)遞減函數(shù),求a的取值范圍.

查看答案和解析>>

同步練習冊答案