已知某曲線C的參數(shù)方程為,(t為參數(shù),a∈R)點(diǎn)M(5,4)在該曲線上,(1)求常數(shù)a;(2)求曲線C的普通方程。
(1)a=1(2)( x-1)2=4y
本試題主要是考查了參數(shù)方程與普通方程的轉(zhuǎn)化以及點(diǎn)在曲線上的判定的綜合運(yùn)用。
(1)利用點(diǎn)在曲線上,說明點(diǎn)的坐標(biāo)滿足方程得到參數(shù)a的值。
(2)根據(jù)已知參數(shù)方程,消去參數(shù)t,得到其普通方程。
解: (Ⅰ)代入點(diǎn)M得a=1    (Ⅱ)( x-1)2=4y為所求。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓的中心在原點(diǎn),焦點(diǎn)在軸上,離心率為,且經(jīng)過點(diǎn),直線交橢圓于不同的兩點(diǎn).
(1)求橢圓的方程;
(2)求的取值范圍;
(3)若直線不過點(diǎn),求證:直線軸圍成一個(gè)等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角坐標(biāo)系上取兩個(gè)定點(diǎn),再取兩個(gè)動(dòng)點(diǎn),且.
(Ⅰ)求直線交點(diǎn)的軌跡的方程;
(Ⅱ)已知點(diǎn)()是軌跡上的定點(diǎn),是軌跡上的兩個(gè)動(dòng)點(diǎn),如果直線的斜率與直線的斜率滿足,試探究直線的斜率是否是定值?若是定值,求出這個(gè)定值,若不是,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓C方程:(x-1)2 + y 2=9,垂直于x軸的直線L與圓C相切于N點(diǎn)(N在圓心C的右側(cè)),平面上有一動(dòng)點(diǎn)P,若PQ⊥L,垂足為Q,且;

(1)求點(diǎn)P的軌跡方程; 
(2)已知D為點(diǎn)P的軌跡曲線上第一象限弧上一點(diǎn),O為原點(diǎn),A、B分別為點(diǎn)P的軌跡曲線與軸的正半軸的交點(diǎn),求四邊形OADB的最大面積及D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知A,B的坐標(biāo)分別是,直線AM,BM相交于點(diǎn)M,且它們的斜率之和是2,則點(diǎn)M的軌跡方程是(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

(本小題滿分12分)
如圖所示,點(diǎn)在圓上,軸,點(diǎn)在射線上,且滿足.

(Ⅰ)當(dāng)點(diǎn)在圓上運(yùn)動(dòng)時(shí),求點(diǎn)的軌跡的方程,并根據(jù)取值說明軌跡的形狀.
(Ⅱ)設(shè)軌跡軸正半軸交于點(diǎn),與軸正半軸交于點(diǎn),直線與軌跡交于點(diǎn),點(diǎn)在直線上,滿足,求實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知F1、F2是雙曲線的左右焦點(diǎn),過F1的直線與左支交于A、B兩點(diǎn),若,則該雙曲線的離心率是為(   )
A.            B.        C.        D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓E經(jīng)過點(diǎn)A(2,3),對稱軸為坐標(biāo)軸,焦點(diǎn)在x軸上,離心率
(1)求橢圓E的方程;
(2)求的角平分線所在直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線C的頂點(diǎn)在原點(diǎn),焦點(diǎn)為F(2, 0)。
(1)求拋物線C的方程;
(2)過的直線交曲線兩點(diǎn),又的中垂線交軸于點(diǎn)
的取值范圍。

查看答案和解析>>

同步練習(xí)冊答案