精英家教網 > 高中數學 > 題目詳情
A.[選修4-1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
B.[選修4-2:矩陣與變換]
已知矩陣A的逆矩陣,求矩陣A的特征值.
C.[選修4-4:坐標系與參數方程]
在極坐標中,已知圓C經過點P(),圓心為直線ρsin(θ-)=-與極軸的交點,求圓C的極坐標方程.
D.[選修4-5:不等式選講]
已知實數x,y滿足:|x+y|<,|2x-y|<,求證:|y|<

【答案】分析:A.要證∠E=∠C,就得找一個中間量代換,一方面考慮到∠B,∠E是同弧所對圓周角,相等;另一方面根據線段中垂線上的點到線段兩端的距離相等和等腰三角形等邊對等角的性質得到.從而得證.
B.由矩陣A的逆矩陣,根據定義可求出矩陣A,從而求出矩陣A的特征值.
C.根據圓心為直線ρsin(θ-)=-與極軸的交點求出的圓心坐標;根據圓經過點P(,),求出圓的半徑,從而得到圓的極坐標方程.
D.根據絕對值不等式的性質求證.
解答:A.證明:連接 AD.
∵AB是圓O的直徑,∴∠ADB=90°(直徑所對的圓周角是直角).
∴AD⊥BD(垂直的定義).
又∵BD=DC,∴AD是線段BC 的中垂線(線段的中垂線定義).
∴AB=AC(線段中垂線上的點到線段兩端的距離相等).
∴∠B=∠C(等腰三角形等邊對等角的性質).
又∵D,E 為圓上位于AB異側的兩點,
∴∠B=∠E(同弧所對圓周角相等).
∴∠E=∠C(等量代換).
B、解:∵矩陣A的逆矩陣,∴A=
∴f(λ)=2-3λ-4=0
∴λ1=-1,λ2=4
C、解:∵圓心為直線ρsin(θ-)=-與極軸的交點,
∴在ρsin(θ-)=-中令θ=0,得ρ=1.∴圓C的圓心坐標為(1,0).
∵圓C 經過點P(),∴圓C的半徑為PC=1.
∴圓 的極坐標方程為ρ=2cosθ.
D、證明:∵3|y|=|3y|=|2(x+y)-(2x-y)|≤2|x+y|+2|2x-y|,:|x+y|<,|2x-y|<,
∴3|y|<,

點評:本題是選作題,綜合考查選修知識,考查幾何證明選講、矩陣與變換、坐標系與參數方程、不等式證明,綜合性強
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(選做題)在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內作答,解答時應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,⊙O的半徑OB垂直于直徑AC,M為AO上一點,BM的延長線交⊙O于N,過
N點的切線交CA的延長線于P.
(1)求證:PM2=PA•PC;
(2)若⊙O的半徑為2
3
,OA=
3
OM,求MN的長.
B.選修4-2:矩陣與變換
曲線x2+4xy+2y2=1在二階矩陣M=
.
1a
b1
.
的作用下變換為曲線x2-2y2=1,求實數a,b的值;
C.選修4-4:坐標系與參數方程
在極坐標系中,圓C的極坐標方程為ρ=
2
cos(θ+
π
4
)
,以極點為原點,極軸為x軸的正半軸建立平面直角坐標系,直線l的參數方程為
x=1+
4
5
y=-1-
3
5
(t為參數),求直線l被圓C所截得的弦長.
D.選修4-5:不等式選講
設a,b,c均為正實數.
(1)若a+b+c=1,求a2+b2+c2的最小值;
(2)求證:
1
2a
+
1
2b
+
1
2c
1
b+c
+
1
c+a
+
1
a+b

查看答案和解析>>

科目:高中數學 來源: 題型:

【選做題】在A,B,C,D四小題中只能選做2題,每小題10分,共計20分.請在答題卡指定區(qū)域內作答.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1 幾何證明選講
如圖,⊙O的直徑AB的延長線與弦CD的延長線相交于點P,E為⊙O上一點,AE=AC,DE交AB于點F.求證:△PDF∽△POC.
B.選修4-2 矩陣與變換
若點A(2,2)在矩陣M=
cosα-sinα
sinαcosα
對應變換的作用下得到的點為B(-2,2),求矩陣M的逆矩陣.
C.選修4-4 坐標系與參數方程
已知極坐標系的極點O與直角坐標系的原點重合,極軸與x軸的正半軸重合,
曲線C1ρcos(θ+
π
4
)=2
2
與曲線C2
x=4t2
y=4t
(t∈R)交于A、B兩點.求證:OA⊥OB.
D.選修4-5 不等式選講
已知x,y,z均為正數.求證:
x
yz
+
y
zx
+
z
xy
1
x
+
1
y
+
1
z

查看答案和解析>>

科目:高中數學 來源: 題型:

(選做題)請考生在A、B、C三題中任選一題作答,如果多做,則按所做的第一題記分.作答時請寫清題號.
A.選修4-1(幾何證明選講)已知AD為圓O的直徑,直線BA與圓O相切與點A,直線OB與弦AC垂直并相交于點G,與弧AC相交于M,連接DC,AB=10,AC=12.
(Ⅰ)求證:BA•DC=GC•AD;(Ⅱ)求BM.
B.選修4-4(坐標系與參數方程)求直線
x=1+4t
y=-1-3t
(t為參數)被曲線ρ=
2
cos(θ+
π
4
)
所截的弦長.
C.選修4-5(不等式選講)(Ⅰ)求函數y=3
x-5
+4
6-x
的最大值;
(Ⅱ)已知a≠b,求證:a4+6a2b2+b4>4ab(a2+b2).

查看答案和解析>>

科目:高中數學 來源: 題型:

選做題:在A、B、C、D四小題中只能選做2題,每小題10分,共計20分.請在答卷紙指定區(qū)域內作答.解答應寫出文字說明、證明過程或演算步驟.
A.選修4-1:幾何證明選講
如圖,AD是∠BAC的平分線,⊙O過點A且與BC邊相切于點D,與AB、AC分別交于E,F(xiàn),求證:EF∥BC.

B.選修4-2:矩陣與變換
已知a,b∈R若矩陣M=
.
-1a
b3
.
所對應的變換把直線l:2x-y=3變換為自身,求a,b的值.

C.選修4-4:坐標系與參數方程
將參數方程
x=2(t+
1
t
)
y=4(t-
1
t
)
(t為參數)化為普通方程.
D.選修4-5:不等式選講
已知a,b是正數,求證:(a+
1
b
)(2b+
1
2a
)≥
9
2

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•江蘇)A.[選修4-1:幾何證明選講]
如圖,AB是圓O的直徑,D,E為圓上位于AB異側的兩點,連接BD并延長至點C,使BD=DC,連接AC,AE,DE.
求證:∠E=∠C.
B.[選修4-2:矩陣與變換]
已知矩陣A的逆矩陣A-1=
-
1
4
3
4
1
2
-
1
2
,求矩陣A的特征值.
C.[選修4-4:坐標系與參數方程]
在極坐標中,已知圓C經過點P(
2
,
π
4
),圓心為直線ρsin(θ-
π
3
)=-
3
2
與極軸的交點,求圓C的極坐標方程.
D.[選修4-5:不等式選講]
已知實數x,y滿足:|x+y|<
1
3
,|2x-y|<
1
6
,求證:|y|<
5
18

查看答案和解析>>

同步練習冊答案