【題目】若曲線與直線滿足:①在某點(diǎn)處相切;②曲線附近位于直線的異側(cè),則稱曲線與直線“切過”.下列曲線和直線中,“切過”的有________.(填寫相應(yīng)的編號(hào))

【答案】①④⑤

【解析】

理解新定義的意義,借助導(dǎo)數(shù)的幾何意義逐一進(jìn)行判斷推理,即可得到答案。

對(duì)于①,,所以是曲線在點(diǎn) 處的切線,畫圖可知曲線在點(diǎn)附近位于直線的兩側(cè),①正確;

對(duì)于②,因?yàn)?/span>,所以不是曲線在點(diǎn)處的切線,②錯(cuò)誤;

對(duì)于③,,,在的切線為,畫圖可知曲線在點(diǎn)附近位于直線的同側(cè),③錯(cuò)誤;

對(duì)于④,,在點(diǎn)處的切線為,畫圖可知曲線在點(diǎn)附近位于直線的兩側(cè),④正確;

對(duì)于⑤,,,在點(diǎn)處的切線為,圖可知曲線在點(diǎn)附近位于直線的兩側(cè),⑤正確.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】連續(xù)擲3枚硬幣,觀察落地后這3枚硬幣出現(xiàn)正面還是反面.(與先后順序有關(guān))

1)寫出這個(gè)試驗(yàn)的樣本空間及樣本點(diǎn)的個(gè)數(shù);

2)寫出事件“恰有兩枚正面向上”的集合表示.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),曲線處的切線方程為.

(1)求函數(shù)的解析式;

(2)求在區(qū)間上的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某課程考核分理論與實(shí)驗(yàn)兩部分進(jìn)行,每部分考核成績只記“合格”與“不合格”,兩部分考核都是“合格”,則該課程考核“合格”,若甲、乙、丙三人在理論考核中合格的概率分別為0.9,0.8,0.7,在實(shí)驗(yàn)考核中合格的概率分別為0.8,0.7,0.9,所有考核是否合格相互之間沒有影響.

(1)求甲、乙、丙三人在理論考核中至少有兩人合格的概率;

(2)求這三個(gè)人該課程考核都合格的概率(結(jié)果保留三位小數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人各擲一個(gè)均勻的骰子,觀察朝上的面的點(diǎn)數(shù),記事件A:甲得到的點(diǎn)數(shù)為2B:乙得到的點(diǎn)數(shù)為奇數(shù).

1)求,,,判斷事件AB是否相互獨(dú)立;

2)求.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4—4:極坐標(biāo)與參數(shù)方程

在平面直角坐標(biāo)系中,將曲線 (為參數(shù)) 上任意一點(diǎn)經(jīng)過伸縮變換后得到曲線的圖形.以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的非負(fù)半軸為極軸,取相同的單位長度建立極坐標(biāo)系,已知直線

Ⅰ)求曲線和直線的普通方程;

Ⅱ)點(diǎn)P為曲線上的任意一點(diǎn),求點(diǎn)P到直線的距離的最大值及取得最大值時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+1,g(x)=2alnx+1(aR)

(1)求函數(shù)h(x)=f(x)g(x)的極值;

(2)當(dāng)a=e時(shí),是否存在實(shí)數(shù)k,m,使得不等式g(x)≤ kx+m ≤f(x)恒成立?若存在,請(qǐng)求實(shí)數(shù)k,m的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且滿足:

(1)求的通項(xiàng)公式;

(2)設(shè),求的前項(xiàng)和;

(3)在(2)的條件下,對(duì)任意,都成立,求整數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某港口O要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口的O北偏西30°且與該港口相距20海里的A處,并正以30海里/小時(shí)的航行速度沿正東方向勻速行駛.假設(shè)該小艇沿直線方向以v海里/小時(shí)的航行速度勻速行駛,經(jīng)過t小時(shí)與輪船相遇.

I)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?

II)為保證小艇在30分鐘內(nèi)(含30分鐘)能與輪船相遇,試確定小艇航行速度的最小值.

查看答案和解析>>

同步練習(xí)冊答案