【題目】已知一工廠生產(chǎn)了某種產(chǎn)品700件,該工廠對(duì)這些產(chǎn)品進(jìn)行了安全和環(huán)保這兩個(gè)性能的質(zhì)量檢測(cè)。工廠決定利用隨機(jī)數(shù)表法從中抽取100件產(chǎn)品進(jìn)行抽樣檢測(cè),現(xiàn)將700件產(chǎn)品按001,002,…,700進(jìn)行編號(hào);
(1)如果從第8行第4列的數(shù)開(kāi)始向右讀,請(qǐng)你依次寫出最先檢測(cè)的3件產(chǎn)品的編號(hào);
(下面摘取了隨機(jī)數(shù)表的第7~9行)
84 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76
63 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 79
33 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 54
(2)抽取的100件產(chǎn)品的安全性能和環(huán)保性能的質(zhì)量檢測(cè)結(jié)果如下表:
檢測(cè)結(jié)果分為優(yōu)等、合格、不合格三個(gè)等級(jí),橫向和縱向分別表示安全性能和環(huán)保性能。若在該樣本中,產(chǎn)品環(huán)保性能是優(yōu)等的概率為,求,的值。
件數(shù) | 環(huán)保性能 | |||
優(yōu)等 | 合格 | 不合格 | ||
安全性能 | 優(yōu)等 | 6 | 20 | 5 |
合格 | 10 | 18 | 6 | |
不合格 | 4 |
(3)已知,,求在安全性能不合格的產(chǎn)品中,環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率。
【答案】(1)163,567,199; (2); (3).
【解析】
(1)在隨機(jī)數(shù)表中找到第8行第4列,依次選出小于700的三位數(shù)即得到答案
(2)結(jié)合表格中的數(shù)據(jù)和產(chǎn)品環(huán)保性能是優(yōu)等的概率是,求出的值,然后代入求出的值
(3)運(yùn)用枚舉法列舉出所有的可能性,找出符合條件的可能性,求出概率
(1)依題意,最先檢測(cè)的三件產(chǎn)品的編號(hào)為163,567,199;
(2)由%,得,
.
(3)由題意,且,
所以滿足條件的有:
共12組,且每組出現(xiàn)的可能性相同,
其中環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少有共4組,
所以環(huán)保性能為優(yōu)等的件數(shù)比不合格的件數(shù)少的概率為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】[選修4—5:不等式選講]
已知.
(1)若的解集為,求的值;
(2)若不等式恒成立,求實(shí)數(shù)的范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】通過(guò)隨機(jī)詢問(wèn)某地100名高中學(xué)生在選擇座位時(shí)是否挑同桌,得到如下列聯(lián)表:
男生 | 女生 | 合計(jì) | |
挑同桌 | 30 | 40 | 70 |
不挑同桌 | 20 | 10 | 30 |
總計(jì) | 50 | 50 | 100 |
Ⅰ從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個(gè)容量為5的樣本,現(xiàn)從這5人中隨機(jī)選取3人做深度采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;
Ⅱ根據(jù)以上列聯(lián)表,是否有以上的把握認(rèn)為“性別與在選擇座位時(shí)是否挑同桌”有關(guān)?
下面的臨界值表供參考:
參考公式: ,其中
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=x2+alnx.
(1)若a=﹣1,求函數(shù)f(x)的極值,并指出極大值還是極小值;
(2)若a=1,求函數(shù)f(x)在[1,e]上的最值;
(3)若a=1,求證:在區(qū)間[1,+∞)上,函數(shù)f(x)的圖象在g(x)=x3的圖象下方.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】《中華人民共和國(guó)道路交通安全法》第47條的相關(guān)規(guī)定:機(jī)動(dòng)車行經(jīng)人行橫道時(shí),應(yīng)當(dāng)減速慢行;遇行人正在通過(guò)人行橫道,應(yīng)當(dāng)停車讓行,俗稱“禮讓斑馬線”,《中華人民共和國(guó)道路交通安全法》 第90條規(guī)定:對(duì)不禮讓行人的駕駛員處以扣3分,罰款50元的處罰.下表是某市一主干路口監(jiān)控設(shè)備所抓拍的5個(gè)月內(nèi)駕駛員不“禮讓斑馬線”行為統(tǒng)計(jì)數(shù)據(jù):
月份 | 1 | 2 | 3 | 4 | 5 |
違章駕駛員人數(shù) | 120 | 105 | 100 | 90 | 85 |
(1)請(qǐng)利用所給數(shù)據(jù)求違章人數(shù)y與月份之間的回歸直線方程+
(2)預(yù)測(cè)該路口7月份的不“禮讓斑馬線”違章駕駛員人數(shù);
(3)交警從這5個(gè)月內(nèi)通過(guò)該路口的駕駛員中隨機(jī)抽查了50人,調(diào)查駕駛員不“禮讓斑馬線”行為與駕齡的關(guān)系,得到如下2列聯(lián)表:
不禮讓斑馬線 | 禮讓斑馬線 | 合計(jì) | |
駕齡不超過(guò)1年 | 22 | 8 | 30 |
駕齡1年以上 | 8 | 12 | 20 |
合計(jì) | 30 | 20 | 50 |
能否據(jù)此判斷有97.5的把握認(rèn)為“禮讓斑馬線”行為與駕齡有關(guān)?
參考公式及數(shù)據(jù):,.
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(其中n=a+b+c+d)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD是邊長(zhǎng)為3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE與平面ABCD所成角為60°.
(1)求二面角F-BE-D的余弦值;
(2)設(shè)點(diǎn)M是線段BD上一個(gè)動(dòng)點(diǎn),試確定點(diǎn)M的位置,使得AM∥平面BEF,并證明你的結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的右頂點(diǎn)為A,上頂點(diǎn)為B.已知橢圓的離心率為,.
(1)求橢圓的方程;
(2)設(shè)直線與橢圓交于,兩點(diǎn),與直線交于點(diǎn)M,且點(diǎn)P,M均在第四象限.若的面積是面積的2倍,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法錯(cuò)誤的是
A. 對(duì)分類變量X與Y,隨機(jī)變量K2的觀測(cè)值k越大,則判斷“X與Y有關(guān)系”的把握程度越小
B. 在回歸直線方程=0.2x+0.8中,當(dāng)解釋變量x每增加1個(gè)單位時(shí),預(yù)報(bào)變量平均增加0.2個(gè)單位
C. 兩個(gè)隨機(jī)變量的線性相關(guān)性越強(qiáng),則相關(guān)系數(shù)的絕對(duì)值就越接近于1
D. 回歸直線過(guò)樣本點(diǎn)的中心(, )
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系中,曲線的參數(shù)方程為(為參數(shù)),以原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為(限定).
(1)寫出曲線的極坐標(biāo)方程,并求與交點(diǎn)的極坐標(biāo);
(2)射線與曲線與分別交于點(diǎn)(異于原點(diǎn)),求的取值范圍.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com