【題目】已知定義在R上的函數(shù)f(x)滿足f(x)= ,且f(x)=f(x+2),g(x)= ,則方程g(x)=f(x)﹣g(x)在區(qū)間[﹣3,7]上的所有零點之和為(
A.12
B.11
C.10
D.9

【答案】B
【解析】解:∵f(x)=f(x+2),∴函數(shù)f(x)為周期為2的周期函數(shù),
函數(shù)g(x)= ,其圖像關(guān)于點(2,3)對稱,如圖,函數(shù)f(x)的圖像也關(guān)于點(2,3)對稱,
函數(shù)f(x)與g(x)在[﹣3,7]上的交點也關(guān)于(2,3)對稱,
設(shè)A,B,C,D的橫坐標(biāo)分別為a,b,c,d,
則a+d=4,b+c=4,由圖像知另一交點橫坐標(biāo)為3,
故兩圖像在[﹣3,7]上的交點的橫坐標(biāo)之和為4+4+3=11,
即函數(shù)y=f(x)﹣g(x)在[﹣3,7]上的所有零點之和為11.
故選:B.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線C1:y2=8x與雙曲線C2 (a>0,b>0)有公共焦點F2 , 點A是曲線C1 , C2在第一象限的交點,且|AF2|=5.
(1)求雙曲線C2的方程;
(2)以雙曲線C2的另一焦點F1為圓心的圓M與直線y= 相切,圓N:(x﹣2)2+y2=1.過點P(1, )作互相垂直且分別與圓M、圓N相交的直線l1和l2 , 設(shè)l1被圓M截得的弦長為s,l2被圓N截得的弦長為t,問: 是否為定值?如果是,請求出這個定值;如果不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】長郡中學(xué)學(xué)習(xí)興趣小組通過隨機詢問某地100名高中學(xué)生在選擇座位時是否挑同桌,得到如下列聯(lián)表:

(1)從這50名男生中按是否挑同桌采取分層抽樣的方法抽取一個容量為5的樣本,現(xiàn)從這5人中隨機選取3人做深層采訪,求這3名學(xué)生中至少有2名要挑同桌的概率;

(2)根據(jù)以上列聯(lián)表,是否有95%以上的把握認(rèn)為“性別與在選擇座位時是否挑同桌”有關(guān)?下面的臨界值表僅供參考:

(參考公式: ,其中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】數(shù)列{bn}(bn>0)的首項為1,且前n項和Sn滿足Sn﹣Sn1= + (n≥2).
(1)求{bn}的通項公式;
(2)若數(shù)列{ }前n項和為Tn , 問Tn 的最小正整數(shù)n是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,既是偶函數(shù),又在區(qū)間(0,+∞)上單調(diào)遞減的是(
A.
B.y=x2
C.y=﹣x|x|
D.y=x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為梯形, ,且, 是邊長為2的正三角形,頂點上的射影為點,且 , .

(1)證明:平面平面

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在統(tǒng)計學(xué)中,偏差是指個別測定值與測定的平均值之差,在成績統(tǒng)計中,我們把某個同學(xué)的某科考試成績與該科班平均分的差叫某科偏差,班主任為了了解個別學(xué)生的偏科情況,對學(xué)生數(shù)學(xué)偏差(單位:分)與物理偏差(單位:分)之間的關(guān)系進行學(xué)科偏差分析,決定從全班56位同學(xué)中隨機抽取一個容量為8的樣本進行分析,得到他們的兩科成績偏差數(shù)據(jù)如下:

學(xué)生序號

1

2

3

4

5

6

7

8

數(shù)學(xué)偏差

20

15

13

3

2

-5

-10

-18

物理偏差

6.5

3.5

3.5

1.5

0.5

-0.5

-2.5

-3.5

(1)已知之間具有線性相關(guān)關(guān)系,求關(guān)于的線性回歸方程;

(2)若這次考試該班數(shù)學(xué)平均分為118分,物理平均分為90.5,試預(yù)測數(shù)學(xué)成績126分的同學(xué)的物理成績.

參考公式: , ,

參考數(shù)據(jù): .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c.向量 =(a, b)與 =(cosA,sinB)平行.
(Ⅰ)求A;
(Ⅱ)若a= ,b=2,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,橢圓C上的點到焦點距離的最大值為3,離心率
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若經(jīng)過左焦點F1且傾斜角為 的直線l與橢圓交于A、B兩點,求|AB|的值.

查看答案和解析>>

同步練習(xí)冊答案