10.設(shè)x,y滿足約束條件組$\left\{\begin{array}{l}{2x-y-2≤0}\\{x-y+2≥0}\\{x≥0,y≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x+y的最大值為14.

分析 作出不等式組對應(yīng)的平面區(qū)域,利用數(shù)形結(jié)合即可得到z的最大值.

解答 解:作出不等式組對應(yīng)的平面區(qū)域,如圖:
由z=2x+y得y=-2x+z,
平移直線y=-2x+z由圖象可知當(dāng)直線y=-2x+z經(jīng)過點A時,直線y=-2x+z的截距最大,
由$\left\{\begin{array}{l}{2x-y-2=0}\\{x-y+2=0}\end{array}\right.$,解得A(4,6)
此時z最大,此時z的最大值為z=2×4+6=14,
故答案為:14.

點評 本題主要考查線性規(guī)劃的應(yīng)用,利用z的幾何意義,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.若f(x)=x2-2x+3,g(x)=log2x+m,?x1,x2∈[1,4],有f(x1)≥g(x2)成立,則實數(shù)m的取值范圍是(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=($\frac{1}{3}$)x,其反函數(shù)為y=g(x).
(1)若g(mx2+2x+1)的定義域為R,求實數(shù)m的取值范圍;
(2)當(dāng)x∈[-1,1]時,求函數(shù)y=[f(x)]2-2af(x)+3的最小值h(a);
(3)是否存在實數(shù)m>n>3,使得函數(shù)y=h(x)的定義域為[n,m],值域為[n2,m2],若存在,求出m、n的值;若不存在,則說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知函數(shù)f(x)=|x+1|+|x+2|+|x-1|+|x-2|,且f(a2-3a+2)=f(a-1),則滿足條件的所有整數(shù)a的和是6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.海上有三個小島A,B,C,則得∠BAC=135°,AB=6,AC=3$\sqrt{2}$,若在B,C兩島的連線段之間建一座燈塔D,使得燈塔D到A,B兩島距離相等,則B,D間的距離為(  )
A.$3\sqrt{10}$B.$\sqrt{10}$C.$\sqrt{13}$D.$3\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=log2(9x-a)-log2(3x-2),其中a為常數(shù).
(1)當(dāng)a=5時,求不等式f(x)<2的解集;
(2)若不等式f(x)>1對定義域內(nèi)的所有x恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=($\frac{1}{2}$)ax,a為常數(shù),且函數(shù)的圖象過點(-1,2).則a=1,若g(x)=4-x-2,且g(x)=f(x),則x=-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.化簡或求值:
(1)[(-2)6]${\;}^{\frac{1}{2}}$+$\frac{1}{\sqrt{5}+2}$-($\sqrt{3}$-1)0-$\sqrt{9-4\sqrt{5}}$
(2)lg25+lg4-7${\;}^{lo{g}_{7}2}$+(log43+log89)•log32.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.橢圓$\frac{x^2}{16}+\frac{y^2}{25}=1$的短軸長為( 。
A.4B.5C.6D.8

查看答案和解析>>

同步練習(xí)冊答案