分析 利用等差數(shù)列的性質(zhì)可得:2sinB=sinA+sinC,由正弦定理得2b=a+c,解得a=2c,b=$\frac{3}{2}$c,結(jié)合余弦定理即可解得cosA的值.
解答 解:在△ABC中,∵sinA,sinB,sinC成等差數(shù)列,可得:2sinB=sinA+sinC,
∴由正弦定理可得:2b=a+c,
又∵a=2c,可得:b=$\frac{3}{2}$c,
∴cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{\frac{9{c}^{2}}{4}+{c}^{2}-4{c}^{2}}{2×\frac{3c}{2}×c}$=$-\frac{1}{4}$.
故答案為:$-\frac{1}{4}$.
點(diǎn)評 本題主要考查了等差數(shù)列的性質(zhì),正弦定理,余弦定理在解三角形中的應(yīng)用,考查了計算能力和轉(zhuǎn)化思想,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
X | 0 | 1 |
P | $\frac{a}{2}$ | $\frac{a^2}{2}$ |
A. | 2 | B. | 2或0.5 | C. | 0.5 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com