精英家教網 > 高中數學 > 題目詳情

若函數有兩個不同的零點,,那么在兩個函數值中(    )                                                                                                             

A.只有一個小于                           B.至少有一個小于      

C.都小于                                D.可能都大于

 

【答案】

B

【解析】解:(用特殊值來排除)令,,則;

,,則,.選B

另解:設,則

  ,所以,至少有一個小于

 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

(1)已知函數f(x)=|x-2|+|x-4|的最小值為m,實數a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標系xOy中,曲線C的參數方程為
x=2tcosθ
y=2sinθ
(t為非零常數,θ為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數t,使得直線l與曲線C有兩個不同的公共點A、B,且
OA
OB
=10
(其中O為坐標原點)?若存在,請求出;否則,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•泉州模擬)(1)選修4-2:矩陣與變換
若二階矩陣M滿足M
12
34
=
710
46

(Ⅰ)求二階矩陣M;
(Ⅱ)把矩陣M所對應的變換作用在曲線3x2+8xy+6y2=1上,求所得曲線的方程.
(2)選修4-4:坐標系與參數方程
已知在直角坐標系xOy中,曲線C的參數方程為
x=2tcosθ
y=2sinθ
(t為非零常數,θ為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數t,使得直線l與曲線C有兩個不同的公共點A、B,且
OA
OB
=10
(其中O為坐標原點)?若存在,請求出;否則,請說明理由.
(3)選修4-5:不等式選講
已知函數f(x)=|x-2|+|x-4|的最小值為m,實數a,b,c,n,p,q滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

查看答案和解析>>

科目:高中數學 來源: 題型:

定義在R上的非零偶函數y=f(x)滿足:對任意的x,y∈[0,+∞)都有f(x+y)=f(x)•f(y)成立,且當x>0時,f(x)>1.
(1)若f(1)=2,求f(-4)的值;
(2)證明:函數f(x)在(0,+∞)上為單調遞增函數;
(3)若關于x的方程f(x)=f(
a(x-1)x+1
)
在(2,+∞)上有兩個不同的實根,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源:2014屆四川省高二“零診”考試文科數學試卷(解析版) 題型:解答題

已知函數(其中a,b為實常數)。

(Ⅰ)討論函數的單調區(qū)間:

(Ⅱ)當時,函數有三個不同的零點,證明:

(Ⅲ)若在區(qū)間上是減函數,設關于x的方程的兩個非零實數根為。試問是否存在實數m,使得對任意滿足條件的a及t恒成立?若存在,求m的取值范圍;若不存在,請說明理由。

 

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

(1)已知函數f(x)=|x-2|+|x-4|的最小值為m,實數a,b,c,n,p,q
滿足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;     (Ⅱ)求證:
n4
a2
+
p4
b2
+
q4
c2
≥2

(2)已知在直角坐標系xOy中,曲線C的參數方程為
x=2tcosθ
y=2sinθ
(t為非零常數,θ為參數),在極坐標系(與直角坐標系xOy取相同的長度單位,且以原點O為極點,以x軸正半軸為極軸)中,直線l的方程為ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲線C的普通方程并說明曲線的形狀;
(Ⅱ)是否存在實數t,使得直線l與曲線C有兩個不同的公共點A、B,且
OA
OB
=10
(其中O為坐標原點)?若存在,請求出;否則,請說明理由.

查看答案和解析>>

同步練習冊答案