【題目】某中學(xué)“主持朗誦”社團(tuán)的成員中,分別有高一、高二、高三年級(jí)各1、2、3名表達(dá)與形象俱佳的學(xué)生,在該校“元旦節(jié)目匯演”中,要從這6名學(xué)生中選取兩人擔(dān)任節(jié)目主持人,則至少有一個(gè)是高三學(xué)生的概率是_____.
【答案】
【解析】
設(shè)高三的3位同學(xué)為A1,A2,A3,高二的2位同學(xué)為B1,B2,高一的1位同學(xué)為C1,列舉可得總的基本事件有15個(gè),符合條件的有12個(gè),由概率公式可得.
解:設(shè)高三的3位同學(xué)為A1,A2,A3,高二的2位同學(xué)為B1,B2,高一的1位同學(xué)為C1,
則從六位同學(xué)中抽兩位同學(xué)有15種可能,列舉如下:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),
(A1,C1),(A2,A3),(A2,B1),(A2,B2),
(A2,C1),(A3,B1),(A3,B2),(A3,C1),
(B1,B2),(B1,C1),(B2,C1),
其中高三的3位同學(xué)至少一位同學(xué)參加縣里測(cè)試的有:
(A1,A2),(A1,A3),(A1,B1),(A1,B2),
(A1,C1),(A2,A3),(A2,B1),(A2,B2),
(A2,C1),(A3,B1),(A3,B2),(A3,C1),
12種可能.
∴高二至少有一名學(xué)生參加縣里比賽的概率為:
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】手機(jī)支付也稱(chēng)為移動(dòng)支付,是指允許用戶(hù)使用其移動(dòng)終端(通常是手機(jī))對(duì)所消費(fèi)的商品或服務(wù)進(jìn)行賬務(wù)支付的一種服務(wù)方式.隨著信息技術(shù)的發(fā)展,手機(jī)支付越來(lái)越成為人們喜歡的支付方式.某機(jī)構(gòu)對(duì)某地區(qū)年齡在15到75歲的人群“是否使用手機(jī)支付”的情況進(jìn)行了調(diào)查,隨機(jī)抽取了100人,其年齡頻率分布表和使用手機(jī)支付的人數(shù)如下所示:(年齡單位:歲)
年齡段 | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75] |
頻率 | 0.1 | 0.32 | 0.28 | 0.22 | 0.05 | 0.03 |
使用人數(shù) | 8 | 28 | 24 | 12 | 2 | 1 |
(1)若以45歲為分界點(diǎn),根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫(xiě)下面的2×2列聯(lián)表,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.001的前提下認(rèn)為“使用手機(jī)支付”與年齡有關(guān)?
年齡低于45歲 | 年齡不低于45歲 | |
使用手機(jī)支付 | ||
不使用手機(jī)支付 |
(2)若從年齡在[55,65),[65,75]的樣本中各隨機(jī)選取2人進(jìn)行座談,記選中的4人中“使用手機(jī)支付”的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):
P(K2≥k0) | 0.025 | 0.010 | 0.005 | 0.001 |
k0 | 3.841 | 6.635 | 7.879 | 10.828 |
參考公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】2019年是中國(guó)成立70周年,也是全面建成小康社會(huì)的關(guān)鍵之年.為了迎祖國(guó)70周年生日,全民齊心奮力建設(shè)小康社會(huì),某校特舉辦“喜迎國(guó)慶,共建小康”知識(shí)競(jìng)賽活動(dòng).下面的莖葉圖是參賽兩組選手答題得分情況,則下列說(shuō)法正確的是( )
A.甲組選手得分的平均數(shù)小于乙組選手的平均數(shù)B.甲組選手得分的中位數(shù)大于乙組選手的中位數(shù)
C.甲組選手得分的中位數(shù)等于乙組選手的中位數(shù)D.甲組選手得分的方差大于乙組選手的的方差
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知.(其中實(shí)數(shù)).
(1)分別求出p,q中關(guān)于x的不等式的解集M和N;
(2)若p是q的必要不充分條件,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某調(diào)查機(jī)構(gòu)為了解人們對(duì)某個(gè)產(chǎn)品的使用情況是否與性別有關(guān),在網(wǎng)上進(jìn)行了問(wèn)卷調(diào)查,在調(diào)查結(jié)果中隨機(jī)抽取了份進(jìn)行統(tǒng)計(jì),得到如下列聯(lián)表:
男性 | 女性 | 合計(jì) | |
使用 | 15 | 5 | 20 |
不使用 | 10 | 20 | 30 |
合計(jì) | 25 | 25 | 50 |
(1)請(qǐng)根據(jù)調(diào)查結(jié)果你有多大把握認(rèn)為使用該產(chǎn)品與性別有關(guān);
(2)在不使用該產(chǎn)品的人中,按性別用分層抽樣抽取人,再?gòu)倪@人中隨機(jī)抽取人參加某項(xiàng)活動(dòng),記被抽中參加該項(xiàng)活動(dòng)的女性人數(shù)為,求的分布列和數(shù)學(xué)期望.
附:,
0.010 | 0.005 | 0.001 | |
6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在直角坐標(biāo)系xOy中,已知拋物線(xiàn)C:y2=2px(p>0)的焦點(diǎn)為F,過(guò)F垂直于x軸的直線(xiàn)與C相交于A、B兩點(diǎn),△AOB的面積為2.
(1)求拋物線(xiàn)C的方程;
(2)若過(guò)P(,0)的直線(xiàn)與C相交于M,N兩點(diǎn),且2,求直線(xiàn)l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)設(shè),曲線(xiàn)在點(diǎn)處的切線(xiàn)在軸上的截距為,求的最小值;
(Ⅱ)若只有一個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(2017·江蘇高考)如圖,在三棱錐ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點(diǎn)E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.
求證:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD為菱形,四邊形ACFE為平行四邊形,設(shè)BD與AC相交于點(diǎn)G,AB=BD=AE=2,∠EAD=∠EAB.
(1)證明:平面ACFE⊥平面ABCD;
(2)若直線(xiàn)AE與BC的夾角為60°,求直線(xiàn)EF與平面BED所成角的余弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com