【題目】如圖,已知點在圓柱的底面上,,,,分別為,的直徑,且.若圓柱的體積,,,回答下列問題:
(1)求三棱錐的體積.
(2)在線段AP上是否存在一點M,使異面直線OM與所成的角的余弦值為?若存在,請指出點M的位置,并證明;若不存在,請說明理由.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知拋物線:,過拋物線焦點且與軸垂直的直線與拋物線相交于、兩點,且的周長為.
(1)求拋物線的方程;
(2)若直線過焦點且與拋物線相交于、兩點,過點、分別作拋物線的切線、,切線與相交于點,求:的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某電子科技公司由于產(chǎn)品采用最新技術(shù),銷售額不斷增長,最近個季度的銷售額數(shù)據(jù)統(tǒng)計如下表(其中表示年第一季度,以此類推):
季度 | |||||
季度編號x | |||||
銷售額y(百萬元) |
(1)公司市場部從中任選個季度的數(shù)據(jù)進(jìn)行對比分析,求這個季度的銷售額都超過千萬元的概率;
(2)求關(guān)于的線性回歸方程,并預(yù)測該公司的銷售額.
附:線性回歸方程:其中,
參考數(shù)據(jù):.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】中央政府為了應(yīng)對因人口老齡化而造成的勞動力短缺等問題,擬定出臺“延遲退休年齡政策”.為了了解人們對“延遲退休年齡政策”的態(tài)度,責(zé)成人社部進(jìn)行調(diào)研.人社部從網(wǎng)上年齡在15~65歲的人群中隨機(jī)調(diào)查100人,調(diào)查數(shù)據(jù)的頻率分布直方圖如圖所示, 支持“延遲退休年齡政策”的人數(shù)與年齡的統(tǒng)計結(jié)果如表:
年齡(歲) | |||||
支持“延遲退休年齡政策”人數(shù) | 15 | 5 | 15 | 28 | 17 |
(I)由以上統(tǒng)計數(shù)據(jù)填寫下面的列聯(lián)表;
年齡低于45歲的人數(shù) | 年齡不低于45歲的人數(shù) | 總計 | |
支持 | |||
不支持 | |||
總計 |
(II)通過計算判斷是否有的把握認(rèn)為以45歲為分界點的不同人群對“延遲退休年齡政策”的態(tài)度有差異.
0.100 | 0.050 | 0.010 | 0.001 | |
2.706 | 3.841 | 6.635 | 10.828 |
參考公式:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某專賣店為了對新產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按不同的單價試銷,調(diào)查統(tǒng)計如下表:
售價(元) | 4 | 5 | 6 | 7 | 8 |
周銷量(件) | 90 | 85 | 83 | 79 | 73 |
(1)求周銷量y(件)關(guān)于售價x(元)的線性回歸方程;
(2)按(1)中的線性關(guān)系,已知該產(chǎn)品的成本為2元/件,為了確保周利潤大于598元,則該店應(yīng)該將產(chǎn)品的售價定為多少?
參考公式:,.
參考數(shù)據(jù):,
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】遞增的等差數(shù)列的前項和為.若與是方程的兩個實數(shù)根.
(1)求數(shù)列的通項公式;
(2)當(dāng)為多少時,取最小值,并求其最小值;
(3)求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某小型企業(yè)甲產(chǎn)品生產(chǎn)的投入成本x(單位:萬元)與產(chǎn)品銷售收入y(單位:萬元)存在較好的線性關(guān)系,下表記錄了最近5次該產(chǎn)品的相關(guān)數(shù)據(jù).
x(萬元) | 3 | 5 | 7 | 9 | 11 |
y(萬元) | 8 | 10 | 13 | 17 | 22 |
(1)求y關(guān)于x的線性回歸方程;
(2)根據(jù)(1)中的回歸方程,判斷該企業(yè)甲產(chǎn)品投入成本12萬元的毛利率更大還是投入成本15萬元的毛利率更大(毛利率)?
相關(guān)公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體的棱長為, 分別是的中點,點在棱
上, ().
(Ⅰ)三棱錐的體積分別為,當(dāng)為何值時, 最大?最大值為多少?
(Ⅱ)若平面,證明:平面平面.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com