【題目】如圖所示,在正方體中,、分別為和的中點(diǎn).
(1)求證:平面;
(2)求直線與面所成的角的余弦值.
【答案】(1)證明見解析;(2).
【解析】
(1)連接,利用中位線的性質(zhì)證明出,然后利用直線與平面平行的判定定理可證明出平面;
(2)設(shè)正方體的棱長(zhǎng)為,取的中點(diǎn),連接,證明出平面,可得出直線與平面所成的角為,然后計(jì)算出的三邊邊長(zhǎng),然后利用銳角三角函數(shù)的定義可求出,即為直線與面所成的角的余弦值.
(1)如下圖所示,連接,
、分別為和的中點(diǎn),,
平面,平面,平面;
(2)如下圖所示,設(shè)正方體的棱長(zhǎng)為,取的中點(diǎn),連接,
、分別為、的中點(diǎn),則,且,
在正方體中,平面,平面,
直線與平面所成的角為,由勾股定理得,
平面,平面,,
,
在中,.
因此,直線與面所成的角的余弦值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域是的一切實(shí)數(shù),對(duì)定義域內(nèi)的任意,都有且當(dāng)時(shí),.
(1)求證:是偶函數(shù);
(2)求證:在上是增函數(shù);
(3)試比較與的大小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】口袋里裝有1紅,2白,3黃共6個(gè)形狀相同的小球,從中取出2球,事件“取出的兩球同色”,“取出的2球中至少有一個(gè)黃球”,“取出的2球至少有一個(gè)白球”,“取出的兩球不同色”,“取出的2球中至多有一個(gè)白球”.下列判斷中正確的序號(hào)為________.
①與為對(duì)立事件;②與是互斥事件;③與是對(duì)立事件:④;⑤.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“活水圍網(wǎng)”養(yǎng)魚技術(shù)具有養(yǎng)殖密度高、經(jīng)濟(jì)效益好的特點(diǎn).研究表明:“活水圍網(wǎng)”養(yǎng)魚時(shí),某種魚在一定的條件下,每尾魚的平均生長(zhǎng)速度(單位:千克/年)是養(yǎng)殖密度(單位:尾/立方米)的函數(shù).當(dāng)時(shí),的值為2千克/年;當(dāng)時(shí),是的一次函數(shù);當(dāng)時(shí),因缺氧等原因,的值為0千克/年.
(1)當(dāng)時(shí),求關(guān)于的函數(shù)表達(dá)式.
(2)當(dāng)養(yǎng)殖密度為多少時(shí),魚的年生長(zhǎng)量(單位:千克/立方米)可以達(dá)到最大?并求出最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=Asin(2ωx+φ)(A>0,ω>0,|φ|<)的部分圖象如圖所示
(1)求A,ω,φ的值;
(2)求圖中a,b的值及函數(shù)f(x)的遞增區(qū)間;
(3)若α∈[0,π],且f(α)=,求α的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種計(jì)算機(jī)病毒是通過電子郵件進(jìn)行傳播的,下表是某公司前5天監(jiān)測(cè)到的數(shù)據(jù):
第天 | 1 | 2 | 3 | 4 | 5 |
被感染的計(jì)算機(jī)數(shù)量(臺(tái)) | 10 | 20 | 39 | 81 | 160 |
則下列函數(shù)模型中,能較好地反映計(jì)算機(jī)在第天被感染的數(shù)量與之間的關(guān)系的是
A. B.
C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)定義在上且滿足下列兩個(gè)條件:
①對(duì)任意都有;
②當(dāng)時(shí),有,
(1)求,并證明函數(shù)在上是奇函數(shù);
(2)驗(yàn)證函數(shù)是否滿足這些條件;
(3)若,試求函數(shù)的零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD所在平面垂直于直角梯形ABPE所在平面于直線AB,且ABBP2,AD=AE=1,AE⊥AB,且AE∥BP.
(1)求平面PCD與平面ABPE所成的二面角的余弦值;
(2)線段PD上是否存在一點(diǎn)N,使得直線BN與平面PCD所成角的正弦值等于?若存在,試確定點(diǎn)N的位置;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,,,,,,點(diǎn)為的中點(diǎn).
(1)求證:平面;
(2)若平面 平面,求直線與平面所成角的正弦值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com