16.在區(qū)間[-1,4]上隨機選取一個數(shù)X,則X≤1的概率為$\frac{2}{5}$.

分析 根據(jù)幾何概型的概率公式進行求解即可.

解答 解:∵在區(qū)間[-1,4]上隨機選取一個數(shù)X,
∴X≤1的概率P=$\frac{1-(-1)}{4-(-1)}$=$\frac{2}{5}$,
故答案為:$\frac{2}{5}$

點評 本題主要考查概率的計算,根據(jù)幾何概型的概率公式轉(zhuǎn)化為求對應(yīng)長度之比是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.設(shè)集合A={x|0≤x≤6},集合B={x|x2+2x-8≤0},則A∪B=( 。
A.[0,2]B.[-4,2]C.[0,6]D.[-4,6]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.(3x-2)10的展開式的第5項的系數(shù)是( 。
A.$C_{10}^5$B.$C_{10}^5•{3^5}•{({-2})^5}$C.$C_{10}^4•{3^6}•{({-2})^4}$D.$C_{10}^4$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)隨機變量ξ的取值為0,1,2.若P(ξ=0)=$\frac{1}{5}$,E(ξ)=1,則D(ξ)=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.函數(shù)y=ln(|3x-1|-1)的定義域是( 。
A.(-∞,0)B.$(\frac{2}{3},+∞)$C.$(-∞,0)∪(\frac{2}{3},+∞)$D.$(0,\frac{2}{3})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.給出下列四個命題:
①設(shè)x1,x2∈R,則x1>1且x2>1的充要條件是x1+x2>2且x1x2>1;
②“α=$\frac{π}{6}$”是“sinα=$\frac{1}{2}$”的充分而不必要條件;
③命題“?x∈R,x2≥0”的否定是“?x∈R,x2≤0”;
④已知n個散點Ai(xi,yi)(i=1,2,3,…,n)的線性回歸方程為y=bx+a,若a=$\overline{y}$-b$\overline{x}$,(其中$\overline{x}$=$\frac{1}{n}$$\sum_{i=1}^{n}$xi,$\overline{y}$=$\frac{1}{n}$$\sum_{i=1}^{n}$yi),則此回歸直線必經(jīng)過點($\overline{x}$,$\overline{y}$).
其中正確命題的序號是( 。
A.①②B.②③C.②④D.①④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,在三棱錐S-ABC中,AC⊥BC,AC=3,BC=4,SA=SB=$\sqrt{13}$,平面SAB⊥平面ABC,則二面角S-BC-A的大小為( 。
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖為某幾何體的三視圖,則該幾何體的外接球的表面積為( 。
A.31πB.32πC.34πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.某研究中心為研究運動與性別的關(guān)系得到2×2列聯(lián)表如表:
喜歡數(shù)學(xué)課不喜歡數(shù)學(xué)課合計
男生602080
女生101020
合計7030100
則隨機變量K2的觀測值約為( 。
A.4.762B.9.524C.0.0119D.0.0238

查看答案和解析>>

同步練習(xí)冊答案