【題目】已知函數(shù),的定義域分別為,若存在常數(shù),滿足:①對任意,恒有,且.②對任意,關(guān)于的不等式組恒有解,則稱為的一個“型函數(shù)”.
(1)設(shè)函數(shù)和,求證:為的一個“型函數(shù)”;
(2)設(shè)常數(shù),函數(shù),.若為的一個“型函數(shù)”,求的取值范圍;
(3)設(shè)函數(shù).問:是否存在常數(shù),使得函數(shù)為的一個“型函數(shù)”?若存在,求的取值范圍;若不存在,說明理由.
【答案】(1)證明見解析;(2);(3).
【解析】
(1)由,恒成立,①成立,根據(jù)解析式,為不等式組的一個解,得②成立,即可證明結(jié)論;
(2)為的一個“型函數(shù)”,滿足①對任意,求出的范圍,②對任意,關(guān)于的不等式組恒有解,
轉(zhuǎn)化為求函數(shù)的最值,可求出的范圍,即可求解;
(3)由為的一個“型函數(shù)”,與(2)同理,將同時滿足①②條件的參數(shù)求出,即可求解.
(1)①,
當,
任意,且,
②,,
因為,
為不等式的一個解,
所以為的一個“型函數(shù)”;
(2)①對任意,
,
;
②對任意,關(guān)于的不等式組恒有解,
,即,
因為關(guān)于的不等式組恒有解,所以,
恒成立,;
綜上,;
(3)①對任意對任意,
,
;
②對任意,關(guān)于的不等式組恒有解,
,
考慮,
令,
則,
由于在時,單調(diào)遞增,
或(舍去),
由,記方程的根為,
若,則,
即為不等式組的一個解,
若,取且,
,
綜上,.
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是.以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,直線的參數(shù)方程是(為參數(shù)).
(Ⅰ)將曲線的極坐標方程化為直角坐標方程;
(Ⅱ)若直線與曲線相交于,兩點,且,求直線的傾斜角的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,都是各項為正數(shù)的數(shù)列,且,.對任意的正整數(shù)n,都有,,成等差數(shù)列,,,成等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)若存在p>0,使得集合M=恰有一個元素,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校共有學生2000人,其中男生1100人,女生900人為了調(diào)查該校學生每周平均課外閱讀時間,采用分層抽樣的方法收集該校100名學生每周平均課外閱讀時間(單位:小時)
(1)應(yīng)抽查男生與女生各多少人?
(2)如圖,根據(jù)收集100人的樣本數(shù)據(jù),得到學生每周平均課外閱讀時間的頻率分布直方圖,其中樣本數(shù)據(jù)分組區(qū)間為.若在樣本數(shù)據(jù)中有38名女學生平均每周課外閱讀時間超過2小時,請完成每周平均課外閱讀時間與性別的列聯(lián)表,并判斷是否有95%的把握認為“該校學生的每周平均課外閱讀時間與性別有關(guān)”.
男生 | 女生 | 總計 | |
每周平均課外閱讀時間不超過2小時 | |||
每周平均課外閱讀時間超過2小時 | |||
總計 |
附:
0.100 | 0.050 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設(shè)數(shù)列{an}的前n項和為Sn,且Sn=2an﹣2(n∈N*),數(shù)列{bn}滿足bn=(2n﹣1)an,數(shù)列{bn}的前n項和Tn(n∈N*),
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{bn}的前n項和Tn;
(3)求 的最小值以及取得最小值時n的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列命題中正確的命題是( )
A.標準差越小,則反映樣本數(shù)據(jù)的離散程度越大
B.在回歸直線方程中,當解釋變量每增加1個單位時,則預報變量減少0.4個單位
C.對分類變量與來說,它們的隨機變量的觀測值越小,“與有關(guān)系”的把握程度越大
D.在回歸分析模型中,殘差平方和越小,說明模型的擬合效果越好
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了豐富學生的課外文化生活,某中學積極探索開展課外文體活動的新途徑及新形式,取得了良好的效果.為了調(diào)查學生的學習積極性與參加文體活動是否有關(guān),學校對200名學生做了問卷調(diào)查,列聯(lián)表如下:
參加文體活動 | 不參加文體活動 | 合計 | |
學習積極性高 | 80 | ||
學習積極性不高 | 60 | ||
合計 | 200 |
已知在全部200人中隨機抽取1人,抽到學習積極性不高的學生的概率為.
(1)請將上面的列聯(lián)表補充完整;
(2)是否有99.9%的把握認為學習積極性高與參加文體活動有關(guān)?請說明你的理由;
(3)若從不參加文體活動的同學中按照分層抽樣的方法選取5人,再從所選出的5人中隨機選取2人,求至少有1人學習積極性不高的概率.
附:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,其中.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com