在數(shù)列1 , 1 , 2 , 3 , 5 , 8 , 13,,34,…中,=_______

 

【答案】

21

【解析】數(shù)學(xué)規(guī)律為從第三項(xiàng)起,每一項(xiàng)都等于前兩項(xiàng)的和.因而13+x=34,所以x=21

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x) 定義在(-1,1)上,f(
1
2
)=1,滿足f(x)-f(y)=f(
x-y
1-xy
),且數(shù)列x1=
1
2
,xn+1=
2xn
1+xn2

(Ⅰ)證明:f(x)在(-1,1)上為奇函數(shù);
(Ⅱ)求f(xn)的表達(dá)式;
(Ⅲ)若a1=1,an+1=
12n
2n
f(xn)-an,(n∈N+).試求an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列{an}中,如果對(duì)任意的n∈N*,都有
an+2
an+1
-
an+1
an
(λ為常數(shù)),則稱數(shù)列{an}為比等差數(shù)列,λ稱為比公差.現(xiàn)給出以下命題,其中所有真命題的序號(hào)是
①④
①④

①若數(shù)列{Fn}滿足F1=1,F(xiàn)2=1,F(xiàn)n=Fn-1+Fn-2(n≥3),則該數(shù)列不是比等差數(shù)列;
②若數(shù)列{an}滿足an=(n-1)•2n-1,則數(shù)列{an}是比等差數(shù)列,且比公差λ=2;
③等差數(shù)列是常數(shù)列是成為比等差數(shù)列的充分必要條件;
(文)④數(shù)列{an}滿足:an+1=an2+2an,a1=2,則此數(shù)列的通項(xiàng)為an=32n-1-1,且{an}不是比等差數(shù)列;
(理)④數(shù)列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*)
,則此數(shù)列的通項(xiàng)為an=
n•3n
3n-1
,且{an}不是比等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在數(shù)列1,1,2,3,5,8,13,x,34,55,…中,x的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•茂名二模)數(shù)列{an}的前n項(xiàng)和Sn,a1=t,點(diǎn)(Sn,an+1)在直線y=2x+1上,(n=1,2,…)
(1)若數(shù)列{an}是等比數(shù)列,求實(shí)數(shù)t的值;
(2)設(shè)bn=(n+1)•log3an+1,數(shù)列{
1
bn
}前n項(xiàng)和Tn.在(1)的條件下,證明不等式Tn<1;
(3)設(shè)各項(xiàng)均不為0的數(shù)列{cn}中,所有滿足ci•ci+1<0的整數(shù)i的個(gè)數(shù)稱為這個(gè)數(shù)列{cn}的“積異號(hào)數(shù)”,在(1)的條件下,令cn=
nan-4
nan
(n=1,2,…),求數(shù)列{cn}的“積異號(hào)數(shù)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2010•柳州三模)已知在數(shù)列{an}中,a1=t,a2=t2(t>0且t≠1).x=
t
是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1]x+1(n≥2)的一個(gè)極值點(diǎn).
(1)證明數(shù)列{an+1-an}是等比數(shù)列,并求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=2(1-
1
an
)
,當(dāng)t=2時(shí),數(shù)列{bn}的前n項(xiàng)和為Sn,求使Sn>2008的n的最小值;
(3)當(dāng)t=2時(shí),是否存在指數(shù)函數(shù)g(x),使得對(duì)于任意的正整數(shù)n有
k
k=1
g(k)
(ak+1)(ak+1+1)
1
3
成立?若存在,求出滿足條件的一個(gè)g(x);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案