精英家教網(wǎng)如圖,矩形ABCD和梯形BEFC所在平面互相垂直,∠BCF=∠CEF=90°,AD=
3
,EF=2

(Ⅰ)求證:AE∥平面DCF;
(Ⅱ)當(dāng)AB的長為何值時(shí),二面角A-EF-C的大小為60°?
分析:(Ⅰ)過點(diǎn)E作EG⊥CF并CF于G,連接DG,證明AE平行平面DCF內(nèi)的直線DG,即可證明AE∥平面DCF;
(Ⅱ)過點(diǎn)B作BH⊥EF交FE的延長線于H,連接AH,說明∠AHB為二面角A-EF-C的平面角,通過二面角A-EF-C的大小為60°,求出AB即可.
解答:(Ⅰ)證明:過點(diǎn)E作EG⊥CF并CF于G,連接DG,可得四邊形BCGE為矩形.又ABCD為矩形,
所以AD⊥∥EG,從而四邊形ADGE為平行四邊形,故AE∥DG.
因?yàn)锳E?平面DCF,DG?平面DCF,所以AE∥平面DCF.
精英家教網(wǎng)
(Ⅱ)解:過點(diǎn)B作BH⊥EF交FE的延長線于H,連接AH.
由平面ABCD⊥平面BEFG,AB⊥BC,得
AB⊥平面BEFC,
從而AH⊥EF,
所以∠AHB為二面角A-EF-C的平面角.
在Rt△EFG中,因?yàn)镋G=AD=
3
,EF=2,所以∠CFE=60°,F(xiàn)G=1

又因?yàn)镃E⊥EF,所以CF=4,
從而BE=CG=3.
于是BH=BE•sin∠BEH=
3
3
2

因?yàn)锳B=BH•tan∠AHB,
所以當(dāng)AB=
9
2
時(shí),二面角A-EF-G的大小為60°.
【考點(diǎn)】空間點(diǎn)、線、面位置關(guān)系,空間向量與立體幾何.
【點(diǎn)評】由于理科有空間向量的知識(shí),在解決立體幾何試題時(shí)就有兩套根據(jù)可以使用,這為考生選擇解題方案提供了方便,但使用空間向量的方法解決立體幾何問題也有其相對的缺陷,那就是空間向量的運(yùn)算問題,空間向量有三個(gè)分坐標(biāo),在進(jìn)行運(yùn)算時(shí)極易出現(xiàn)錯(cuò)誤,而且空間向量方法證明平行和垂直問題的優(yōu)勢并不明顯,所以在復(fù)習(xí)立體幾何時(shí),不要純粹以空間向量為解題的工具,要注意綜合幾何法的應(yīng)用.
點(diǎn)評:本題主要考查空間線面關(guān)系、空間向量的概念與運(yùn)算等基礎(chǔ)知識(shí),同時(shí)考查空間想象能力和推理運(yùn)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD和梯形BEFC所在的平面互相垂直,BE∥CF,BE<CF,∠BCF=
π
2
,AD=
3
,EF=2.
(I)求證:DF∥平面ABE;
(II)設(shè)
CF
CD
=λ,問:當(dāng)λ取何值時(shí),二面角D-EF-C的大小為
π
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD和矩形BCEF所在平面互相垂直,G為邊BF上一點(diǎn),∠CGE=90°,AD=
3
,GE=2.
(1)求證:直線AG∥平面DCE;
(2)當(dāng)AB=
2
時(shí),求直線AE與面ABF所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF=90°,BE∥CF,CE⊥EF,AD=
3
,
EF=2.
(1)求異面直線AD與EF所成的角;
(2)當(dāng)二面角D-EF-C的大小為45°時(shí),求二面角A-EC-B的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,矩形ABCD和直角梯形BEFC所在平面互相垂直,∠BCF=90°,BE∥CF,CE⊥EF,AD=
3
,EF=2.
(1)求異面直線AD與EF所成的角;
(2)當(dāng)二面角D-EF-B的大小為45°時(shí),求二面角A-EC-F的大。

查看答案和解析>>

同步練習(xí)冊答案