東海水晶制品廠去年的年產(chǎn)量為10萬(wàn)件,每件水晶產(chǎn)品的銷售價(jià)格為100元,固定成本為80元.從今年起,工廠投入100萬(wàn)元科技成本,并計(jì)劃以后每年比上一年多投入100萬(wàn)元科技成本.預(yù)計(jì)產(chǎn)量每年遞增1萬(wàn)件,每件水晶產(chǎn)品的固定成本g(n)與科技成本的投入次數(shù)n的關(guān)系是g(n)=.若水晶產(chǎn)品的銷售價(jià)格不變,第n次投入后的年利潤(rùn)為f(n)萬(wàn)元.
(1)求出f(n)的表達(dá)式.
(2)求從今年算起第幾年利潤(rùn)最高?最高利潤(rùn)為多少萬(wàn)元?
(1) f(n)=(10+n)(100-)-100n(n∈N*)
(2) 從今年算起第8年利潤(rùn)最高,最高利潤(rùn)為520萬(wàn)元
(1)第n次投入后,產(chǎn)量為(10+n)萬(wàn)件,銷售價(jià)格為100元,固定成本為元,科技成本投入為100n萬(wàn)元.
所以,年利潤(rùn)為f(n)=(10+n)(100-)-100n(n∈N*).
(2)由(1)知f(n)=(10+n)(100-)-100n
=1000-80(+)≤520(萬(wàn)元).
當(dāng)且僅當(dāng)=,
即n=8時(shí),利潤(rùn)最高,最高利潤(rùn)為520萬(wàn)元.
所以,從今年算起第8年利潤(rùn)最高,最高利潤(rùn)為520萬(wàn)元.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)函數(shù)f(x)=-ax2,a∈R.
(1)當(dāng)a=2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)當(dāng)a>0時(shí),求證:函數(shù)f(x)在(0,+∞)內(nèi)有且僅有一個(gè)零點(diǎn);
(3)若函數(shù)f(x)有四個(gè)不同的零點(diǎn),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

冪函數(shù)y=x-1及直線y=x,y=1,x=1將平面直角坐標(biāo)系的第一象限分成八個(gè)“卦限”:①,②,③,④,⑤,⑥,⑦,⑧(如圖所示),那么冪函數(shù)y=的圖象經(jīng)過的“卦限”是(  )
A.④⑦B.④⑧C.③⑧D.①⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

函數(shù)的定義域是(  )
A.(-,-1) B.(1,+)
C.(-1,1)∪(1,+)D.(-,+)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

對(duì)于函數(shù),若都是某一三角形的三邊長(zhǎng),則稱為“可構(gòu)造三角形函數(shù)”.以下說法正確的是(   )
A.不是“可構(gòu)造三角形函數(shù)”;
B.“可構(gòu)造三角形函數(shù)”一定是單調(diào)函數(shù);
C.是“可構(gòu)造三角形函數(shù)”;
D.若定義在上的函數(shù)的值域是為自然對(duì)數(shù)的底數(shù)),則一定是“可構(gòu)造三角形函數(shù)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù)f(x)=若函數(shù)yf(x)-2有3個(gè)零點(diǎn),則實(shí)數(shù)a的值為(  )
A.-4 B.-2C.0 D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知函數(shù)f(x)=3x+x-5的零點(diǎn)x0∈[a,b],且b-a=1,a,b∈N*,則a+b=    .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知函數(shù),則上的零點(diǎn)個(gè)數(shù)為(   )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù),則=           

查看答案和解析>>

同步練習(xí)冊(cè)答案