【題目】某影院共有1000個座位,票價不分等次,根據(jù)該影院的經(jīng)營經(jīng)驗,當(dāng)每張票價不超過10元時,票可全部售出,當(dāng)每張票價高于10元時,每提高1元,將有30張票不能售出,為了獲得更好的收益,需給影院一個合適的票價,符合的基本條件是:
①為了方便找零和算賬,票價定為1元的整數(shù)倍;
②影院放映一場電影的成本費(fèi)為5750元,票房收入必須高于成本支出.
(1)設(shè)定價為()元,凈收入為元,求關(guān)于的表達(dá)式;
(2)每張票價定為多少元時,放映一場的凈收入最多?此時放映一場的凈收入為多少元?
【答案】(1);(2)每張票價定為22元時凈收入最多,最大值為8330元.
【解析】
(1)根據(jù)的范圍,分別求出函數(shù)表達(dá)式;(2)分別求出兩個函數(shù)的最大值,從而綜合得到答案.
(1)電影院共有1000個座位,電影院放一場電影的成本費(fèi)用支出為5750元,票房的收入
必須高于成本支出,
,票價最低為6元,
票價不超過10元時:
,的整數(shù)),
票價高于10元時:
,
,
解得:,
,的整數(shù));
所以
(2)對于,的整數(shù)),
時:最大為4250元,
對于,的整數(shù));
當(dāng)時,最大,
票價定為22元時:凈收人最多為8830元.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】汽車的“燃油效率”是指汽車每消耗1升汽油行駛的里程,下圖描述了甲、乙、丙三輛汽車在不同速度下的燃油效率情況. 下列敘述中正確的是( )
A. 消耗1升汽油,乙車最多可行駛5千米
B. 以相同速度行駛相同路程,三輛車中,甲車消耗汽油最多
C. 甲車以80千米/小時的速度行駛1小時,消耗10升汽油
D. 某城市機(jī)動車最高限速80千米/小時. 相同條件下,在該市用丙車比用乙車更省油
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,AB=AC=1,∠BAC=90°,異面直線A1B與B1C1所成的角為60°.
(1)求該三棱柱的體積;
(2)設(shè)D是BB1的中點(diǎn),求DC1與平面A1BC1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)。
(1)若曲線在點(diǎn)處的切線與直線垂直,求的單調(diào)遞減區(qū)間和極小值(其中為自然對數(shù)的底數(shù));
(2)若對任意恒成立,求的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,直線與相切于點(diǎn).
(1)求橢圓的方程;
(2)若直線與橢圓交于不同的兩點(diǎn),,與直線相交于(,,,均不重合).證明:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)為奇函數(shù).
(1)求a的值,并證明是R上的增函數(shù);
(2)若關(guān)于t的不等式f(t2-2t)+f(2t2-k)<0的解集非空,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市每年春節(jié)前后,由于大量的煙花炮竹的燃放,空氣污染較為嚴(yán)重.該市環(huán)保研究所對近年春節(jié)前后每天的空氣污染情況調(diào)查研究后發(fā)現(xiàn),每天空氣污染的指數(shù)隨時刻(時)變化的規(guī)律滿足表達(dá)式,,其中為空氣治理調(diào)節(jié)參數(shù),且.
(1)令,求的取值范圍;
(2)若規(guī)定每天中的最大值作為當(dāng)天的空氣污染指數(shù),要使該市每天的空氣污染指數(shù)不超過5,試求調(diào)節(jié)參數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知動直線l:(m+3)x-(m+2)y+m=0與圓C:(x-3)2+(y-4)2=9.
(1)求證:無論m為何值,直線l總過定點(diǎn)A,并說明直線l與圓C總相交.
(2)m為何值時,直線l被圓C所截得的弦長最小?請求出該最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在平面直角坐標(biāo)系中的一個橢圓,它的中心在原點(diǎn),左焦點(diǎn)為,右頂點(diǎn)為,
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)(文)若是橢圓上的動點(diǎn),過P作垂直于x軸的垂線,垂足為M,延長MP至N,使得P恰好為MN中點(diǎn),求點(diǎn)N的軌跡方程;
(理)若已知點(diǎn),是橢圓上的動點(diǎn),求線段中點(diǎn)的軌跡方程;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com