年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:福建省四地六校2011-2012學(xué)年高二上學(xué)期第二次月考數(shù)學(xué)理科試題 題型:044
把一顆骰子投擲兩次,記第一次出現(xiàn)的點(diǎn)數(shù)為a2,第二次出現(xiàn)的點(diǎn)數(shù)為b2(其中a>0,b>0).
(Ⅰ)若記事件A“焦點(diǎn)在x軸上的橢圓的方程為+=1”,求事件A的概率;
(Ⅱ)若記事件B“離心率為2的雙曲線的方程為-=1”,求事件B的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
給出如下四個(gè)命題:
①方程x2+y2-2x+1=0表示的圖形是圓;
②若橢圓的離心率為,則兩個(gè)焦點(diǎn)與短軸的兩個(gè)端點(diǎn)構(gòu)成正方形;
③拋物線x=2y2的焦點(diǎn)坐標(biāo)為;
④雙曲線-=1的漸近線方程為y=±x.
其中正確命題的序號是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(本小題滿分12分)已知雙曲線2x2-2y2=1的兩個(gè)焦點(diǎn)為F1,F2,P為動(dòng)點(diǎn),若|PF1|+|PF2|=4.
(1)求動(dòng)點(diǎn)P的軌跡E的方程;
(2)求cos∠F1PF2的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆山東省高二上學(xué)期期中理科數(shù)學(xué)試卷 題型:解答題
已知?jiǎng)狱c(diǎn)P與雙曲線x2-y2=1的兩個(gè)焦點(diǎn)F1,F(xiàn)2的距離之和為定值,
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)M(0,-1),若斜率為k(k≠0)的直線l與P點(diǎn)的軌跡交于不同的兩點(diǎn)A、B,若要使|MA|=|MB|,試求k的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com