拋物線
的焦點坐標(biāo)為
試題分析:原拋物線方程整理成標(biāo)準(zhǔn)形式
,所以焦點為
點評:求拋物線焦點準(zhǔn)線時先要整理為標(biāo)準(zhǔn)方程
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)拋物線
上一點P到y(tǒng)軸的距離是4,則點P到該拋物線焦點的距離是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若拋物線
的焦點到準(zhǔn)線的距離為4,則此拋物線的焦點坐標(biāo)為
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
設(shè)拋物線
上一點P到y(tǒng)軸的距離是4,則點P到該拋物線的焦點的距離是 ( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知拋物線
上一點
到其焦點的距離為5,雙曲線
的左頂點為
,若雙曲線的一條漸近線與直線
平行,則實數(shù)
的值是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:解答題
(本小題13分)曲線
上任意一點M滿足
, 其中F
(-
F
(
拋物線
的焦點是直線y=x-1與x軸的交點, 頂點為原點O.
(1)求
,
的標(biāo)準(zhǔn)方程;
(2)請問是否存在直線
滿足條件:①過
的焦點
;②與
交于不同
兩點
,
,且滿足
?若存在,求出直線
的方程;若不
存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
已知
是拋物線
的焦點,
是該拋物線上的動點,則線段
中點的軌跡方程是( )
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:不詳
題型:單選題
若拋物線y
2=4x的焦點是F準(zhǔn)線是l,則過點F和點M(4,4)且與準(zhǔn)線l相切的圓有( )
查看答案和解析>>