精英家教網(wǎng)如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).
(1)證明:CM⊥DE;
(2)在邊AC上找一點(diǎn)N,使CD∥平面BEN.
分析:(1)由已知中因?yàn)锽C=AC,M為AB中點(diǎn),我們易得CM⊥AB,又由等邊△ABC與直角梯形ABDE所在平面垂直,可得CM⊥平面ABDE,進(jìn)而根據(jù)線(xiàn)面垂直的性質(zhì),即可證明CM⊥DE;
(2)連接AD交BE于點(diǎn)K,連接KN,由已知中直角梯形ABDE所在平面垂直,BD∥AE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).我們易得KN∥CD,結(jié)合線(xiàn)面平行的判定定理,即可得到答案.
解答:解:(1)證明:因?yàn)锽C=AC,M為AB中點(diǎn).所以CM⊥AB,
又因?yàn)槠矫鍭BC⊥平面ABDE,平面ABC∩平面ABDE=AB,CM?平面ABC,
所以CM⊥平面ABDE,
又因DE?平面ABDE,所以CM⊥DE;(7分)
(2)當(dāng)
AN
AC
=
1
3
時(shí),CD∥平面BEN.
連接AD交BE于點(diǎn)K,連接KN,
因梯形ABDE中BD∥AE,BD=2AE,
所以
AK
KD
=
AE
BD
=
1
2
,則
AK
AD
=
1
3

又因
AN
AC
=
1
3
,所以KN∥CD(14分)
又KN?平面BEN,CD?平面BEN,所以CD∥平面BEN.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是直線(xiàn)與平面垂直的性質(zhì)及直線(xiàn)與平面平行的判定,線(xiàn)線(xiàn)垂直可由線(xiàn)面垂直的性質(zhì)推得,直線(xiàn)和平面垂直,這條直線(xiàn)就垂直于平面內(nèi)所有直線(xiàn),這是尋找線(xiàn)線(xiàn)垂直的重要依據(jù).垂直問(wèn)題的證明,其一般規(guī)律是“由已知想性質(zhì),由求證想判定”,也就是說(shuō),根據(jù)已知條件去思考有關(guān)的性質(zhì)定理;根據(jù)要求證的結(jié)論去思考有關(guān)的判定定理,往往需要將分析與綜合的思路結(jié)合起來(lái).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).
(1)證明:CO⊥DE;
(2)求二面角C-DE-A的正切值大。
(3)求B到平面CDE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).
(1)證明:CO⊥DE;
(2)求二面角C-DE-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BDAE,BD=2AE,AE⊥AB,M為AB的中點(diǎn).
(1)證明:CM⊥DE;
(2)在邊AC上找一點(diǎn)N,使CD平面BEN.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,等邊△ABC與直角梯形ABDE所在平面垂直,BD∥AE,AE⊥AB,BC=BD=2AE=2,O為AB的中點(diǎn).

(Ⅰ)證明:CO⊥DE;

(Ⅱ)求二面角C—DE—A的大。

查看答案和解析>>

同步練習(xí)冊(cè)答案