13.求和$\sum_{k=1}^{10}\frac{2}{k(k+1)}$,其結(jié)果為$\frac{20}{11}$.

分析 由$\frac{2}{k(k+1)}$=2($\frac{1}{k}-\frac{1}{k+1}$),利用裂項(xiàng)求和法能求出$\sum_{k=1}^{10}\frac{2}{k(k+1)}$.

解答 解:∵$\frac{2}{k(k+1)}$=2($\frac{1}{k}-\frac{1}{k+1}$),
∴$\sum_{k=1}^{10}\frac{2}{k(k+1)}$=2(1-$\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}$+$\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}$)
=2(1-$\frac{1}{11}$)
=$\frac{20}{11}$.
故答案為:$\frac{20}{11}$.

點(diǎn)評(píng) 本題考查數(shù)列的前10項(xiàng)和的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真這題,注意裂項(xiàng)求和法的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.若△ABC中,sinA•cosB<0,則角B是鈍角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=ax2+$\frac{1}{x}{\;}$(a∈R).
(1)判斷f(x)奇偶性;
(2)當(dāng)f(x)在(1,+∞)遞增,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.設(shè)(1+mx)n=a0+a1x+a2x2+…+anxn,x∈N*
(1)當(dāng)m=2時(shí),若a2=180,求n的值;
(2)當(dāng)m=$\sqrt{2}$,n=8時(shí),求(a0+a2+a4+a6+a82-(a1+a3+a5+a72的值;
(3)當(dāng)m=-1,n=2016時(shí),求S=$\sum_{k=0}^{2016}$$\frac{1}{{a}_{k}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.已知△ABC的面積為S,在邊AB上任取一點(diǎn)P,則△PAC的面積大于$\frac{S}{3}$的概率為$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.f(x)=3sin(-$\frac{1}{5}$x+$\frac{3π}{10}$),若實(shí)數(shù)m滿足f($\sqrt{-{m}^{2}+2m+3}$)>f($\sqrt{-{m}^{2}+4}$),則m的取值范圍是[-1,$\frac{1}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.(文科學(xué)生做)設(shè)函數(shù)f(x)=mx3+xsinx(m≠0),若f($\frac{π}{6}$)=-$\frac{π}{3}$,則f(-$\frac{π}{6}$)=$\frac{π}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)y=log2x-1與y=22-x的圖象的交點(diǎn)為(x0,y0),則x0所在區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知雙曲線C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{^{2}}$=1(a>0,b>0)的一個(gè)頂點(diǎn)為A,虛軸的一個(gè)端點(diǎn)為B,若直線AB與該雙曲線的一條漸近線垂直,則雙曲線C的離心率為( 。
A.$\sqrt{2}$B.$\sqrt{3}$C.2$\sqrt{2}$D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案