20.已知函數(shù)f(x)=$\sqrt{x-3}$-$\frac{1}{\sqrt{7-x}}$的定義域?yàn)榧螦,B={x|2<x<10},C={x|a<x<2a+1}.
(1)求A∪B,(∁RA)∩B
(2)若B∪C=B,求實(shí)數(shù)a的取值范圍.

分析 (1)先求出集合A,再求A∪B,(∁RA)∩B即可;
(2)分B=∅和B≠∅兩類情況來解.

解答 解(1)A={x|3≤x<7},A∪B={x|2<x<10};
(∁RA)∩B={x|2<x<3或7≤x<10}…(4分)
(2)當(dāng)B=ϕ時,a≥2a+1,a≤-1
當(dāng)B≠ϕ時,$\left\{\begin{array}{l}a<2a+1\\ a≥2\\ 2a+1≤10\end{array}\right.$,$2≤a≤\frac{9}{2}$
即a≤-1或$2≤a≤\frac{9}{2}$…(8分)

點(diǎn)評 本題主要考查集合的子交并補(bǔ)集的運(yùn)算,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.如圖,圖案共分9個區(qū)域,有6種不同顏色的涂料可供涂色,每個區(qū)域只能涂一種顏色的涂料,其中2和9同色、3和6同色、4和7同色、5和8同色,且相鄰區(qū)域的顏色不相同,則涂色方法有( 。
A.360種B.720種C.780種D.840種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知f(x)=$\frac{m}{x}$,g(x)=$\frac{{x}^{2}+m}{x}$,且對任意x1>x2≥2,都有f(x1)-f(x2)>x2-x1
(1)判斷g(x)在(2,+∞)上的單調(diào)性;
(2)設(shè)集合A={x|f(x)=2,x>2},證明:A=∅.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知f(x)=$\frac{{{x^2}-2x+1}}{x}$在[$\frac{1}{2}$,3]的最小值為(  )
A.$\frac{1}{2}$B.$\frac{4}{3}$C.-1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.計算下列各式:
(1)($\frac{16}{81}$)${\;}^{-\frac{3}{4}}}$-($\sqrt{3}$-$\sqrt{2}$)0-(1$\frac{9}{16}$)${\;}^{\frac{1}{2}}}$;
(2)log98log29-(lg$\frac{5}{2}$+2lg2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.用秦九韶算法求多項式f(x)=x6-5x5+6x4+x2+3x+2的值,當(dāng)x=-2時,v3的值為-40.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.某程序框圖如圖所示,若該程序運(yùn)行后輸出n的值是4,則自然數(shù)S0的值為1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.下面各組函數(shù)中為相同函數(shù)的是( 。
A.f(x)=$\sqrt{(x-1)^{2}}$,g(x)=x-1B.f(x)=x0,g(x)=13x
C.f(x)=3x,g(x)=($\frac{1}{3}$)-xD.f(x)=x-1,g(x)=$\frac{{x}^{2}-1}{x+1}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知數(shù)列{an}的通項公式為an=$\frac{1}{2n-1}$,n∈N*
(1)求數(shù)列{$\frac{{a}_{n}+2}{{a}_{n}}$}的前n項和Sn
(2)設(shè)bn=anan+1,求{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案