定義在R上的偶函數(shù)f(x)滿足f(x+1)f(x)=-2(f(x)≠0),且在區(qū)間(2013,2014)上單調(diào)遞增,已知α,β是銳角三角形的兩個內(nèi)角,則f(sinα)、f(cosβ)的大小關(guān)系是( 。
A、f(sinα)<f(cosβ)
B、f(sinα)>f(cosβ)
C、f(sinα)=f(cosβ)
D、以上情況均有可能
考點:函數(shù)奇偶性的判斷
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由條件可得f(x)是周期為2的偶函數(shù),在(-1,0)上單調(diào)遞增,故函數(shù)在(0,1)上單調(diào)遞減.
根據(jù)α,β是銳角三角形的兩個內(nèi)角,可得
π
2
>α>
π
2
-β>0,可得1>sinα>sin(
π
2
-β)=cosβ>0.
從而得到f(sinα)與f(cosβ)的大小關(guān)系.
解答: 解:∵定義在R上的偶函數(shù)f(x)滿足f(x+1)f(x)=-2,
∴f(x)=
-2
f(x+1)
=
-2
-2
f(x+2)
=f(x+2),
∴f(x)是周期為2的偶函數(shù).
∵函數(shù)f(x)在區(qū)間(2013,2014)上單調(diào)遞增,
故函數(shù)在(-1,0)上單調(diào)遞增,在(0,1)上單調(diào)遞減.
∵α,β是銳角三角形的兩個內(nèi)角,∴α+β>
π
2
,∴
π
2
>α>
π
2
-β>0,
∴1>sinα>sin(
π
2
-β)=cosβ>0.
則f(sinα)<f(cosβ),
故選:A.
點評:本題考查函數(shù)的奇偶性和單調(diào)性,考查三角函數(shù)的單調(diào)性,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△OAB中,∠AOB=120°,OA=OB=2
3
,邊AB的四等分點分別為A1,A2,A3,A1靠近A,執(zhí)行如圖算法后結(jié)果為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正三棱錐P-ABC的高為2,側(cè)棱與底面所成的角為45°,則點A到側(cè)面PBC的距離是( 。
A、
5
B、2
2
C、
2
D、
6
5
5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=1,|
b
|=2且(
a
+
b
)與
a
垂直,則
a
b
的夾角是( 。
A、60°B、90°
C、135°D、120°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于平面α和兩條不同的直線m,n,下列命題是真命題的是( 。
A、若m⊥α,n⊥α,則m∥n
B、若m∥α,n∥α則m∥n
C、若m⊥α,m⊥n則n∥α
D、若m,n與α所成的角相等,則m∥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知一元二次不等式f(x)≤0的解集為{x|x≤
1
2
,或x≥3}
,則f(ex)>0的解集為( 。
A、{x|x<-ln2,或x>ln3}
B、{x|ln2<x<ln3}
C、{x|x<ln3}}
D、{x|-ln2<x<ln3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合U=R,集合A={x|-l≤x≤3},集合B=|x|log2x<2},則A∩B=( 。
A、{x|1≤x≤3}
B、{x|-1≤x≤3}
C、{x|0<x≤3}
D、{x|-1≤x<0}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對甲、乙兩名籃球運(yùn)動員分別在100場比賽中的得分情況進(jìn)行統(tǒng)計,做出甲的得分頻率分布直方圖如圖所示,列出乙的得分統(tǒng)計表如下:
分值[0,10)[10,20)[20,30)[30,40)
場數(shù)10204030
(Ⅰ)估計甲在一場比賽中得分不低于20分的概率;
(Ⅱ)判斷甲、乙兩名運(yùn)動員哪個成績更穩(wěn)定;(結(jié)論不要求證明)
(Ⅲ)在甲所進(jìn)行的100場比賽中,以每場比賽得分所在區(qū)間中點的橫坐標(biāo)為這場比賽的得分,試計算甲每場比賽的平均得分.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ex-kx2,x∈R
(1)若k=
1
2
,求證:當(dāng)x∈(0,+∞)時,f(x)>1;
(2)若f(x)在區(qū)間(0,+∞)上單調(diào)遞增,試求k的取值范圍;
(3)求證:(
2
14
+1)(
2
24
+1)(
2
34
+1)…(
2
n4
+1)<e4(n∈N*).

查看答案和解析>>

同步練習(xí)冊答案