【題目】無(wú)窮等差數(shù)列{an}的各項(xiàng)均為整數(shù),首項(xiàng)為a1、公差為d,Sn是其前n項(xiàng)和,3、21、15是其中的三項(xiàng),給出下列命題:
①對(duì)任意滿(mǎn)足條件的d,存在a1 , 使得99一定是數(shù)列{an}中的一項(xiàng);
②存在滿(mǎn)足條件的數(shù)列{an},使得對(duì)任意的n∈N* , S2n=4Sn成立;
③對(duì)任意滿(mǎn)足條件的d,存在a1 , 使得30一定是數(shù)列{an}中的一項(xiàng).
其中正確命題的序號(hào)為( )
A.①②
B.②③
C.①③
D.①②③
【答案】A
【解析】解:要使等差數(shù)列的公差最大,則3,15,21為相鄰的前n項(xiàng)和,
此時(shí)對(duì)應(yīng)兩項(xiàng)為15﹣3=12,21﹣15=6,所以d≤6.
①99﹣21=78能被6整除,且 ,假設(shè)15和21之間有n項(xiàng),
那么99和21之間有13n項(xiàng),所以99一定是數(shù)列{an}中的一項(xiàng),所以①正確.
②如果有S2n=4Sn , 那么由等差數(shù)列求和公式有:2na1+n(2n﹣1)d=4[na1+ ],
化簡(jiǎn)得到,d=2a1 , 所以只要滿(mǎn)足條件d=2a1的數(shù)列{an},
就能使得對(duì)任意的n∈N* , S2n=4Sn成立,所以②正確.
③30﹣21=9不能被6整除,如果d=6,那么30一定不是數(shù)列{an}中的一項(xiàng),所以③錯(cuò)誤.
綜上可得:只有①②正確.
故選:A.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解等差數(shù)列的前n項(xiàng)和公式(前n項(xiàng)和公式:).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列命題: ①函數(shù)y=sin( ﹣2x)是偶函數(shù);
②方程x= 是函數(shù)y=sin(2x+ )的圖象的一條對(duì)稱(chēng)軸方程;
③若α、β是第一象限角,且α>β,則sinα>sinβ;
④設(shè)x1、x2是關(guān)于x的方程|logax|=k(a>0,a≠1,k>0)的兩根,則x1x2=1;
其中正確命題的序號(hào)是 . (填出所有正確命題的序號(hào))
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
(1)討論的單調(diào)性;
(2)設(shè),當(dāng)時(shí),,求的最大值;
(3)已知,估計(jì)的近似值(精確到0.001)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的不等式 >1+ (其中k∈R,k≠0).
(1)若x=3在上述不等式的解集中,試確定k的取值范圍;
(2)若k>1時(shí),上述不等式的解集是x∈(3,+∞),求k的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù), 已知曲線y=f(x)
在處的切線與直線垂直。
(1) 求的值;
(2) 若對(duì)任意x≥1,都有,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知E、F、G、H為空間四邊形ABCD的邊AB、BC、CD、DA上的點(diǎn),且EH∥FG.求證:
(1)EH∥面BCD;
(2)EH∥BD.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知平面內(nèi)三個(gè)向量: =(3,2), =(﹣1,2), =(4,1) (Ⅰ)若( +k )∥(2 ﹣ ),求實(shí)數(shù)k的值;
(Ⅱ)設(shè) =(x,y),且滿(mǎn)足( + )⊥( ﹣ ),| ﹣ |= ,求 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)設(shè)曲線與軸正半軸的交點(diǎn)為,曲線在點(diǎn)處的切線方程為,
求證:對(duì)于任意的正實(shí)數(shù),都有;
(3)若方程為實(shí)數(shù))有兩個(gè)正實(shí)數(shù)根且,求證: .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com