將指數(shù)形式(
2
5
2=
4
25
化為對(duì)數(shù)形式,結(jié)果為
 
考點(diǎn):指數(shù)式與對(duì)數(shù)式的互化
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:利用同底指數(shù)式與對(duì)數(shù)式的互化關(guān)系即可得出.
解答: 解:指數(shù)式(
2
5
2=
4
25
轉(zhuǎn)化為對(duì)數(shù)式為2=log
2
5
4
25

故答案為:2=log
2
5
4
25
點(diǎn)評(píng):本題考查了同底指數(shù)式與對(duì)數(shù)式的互化關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

圓的外切正十二邊形的面積為12,則該圓的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=4,點(diǎn)A(
3
,0),以線段AB為直徑的圓O1內(nèi)切于圓O,記點(diǎn)B的軌跡為Γ.
(1)求曲線Γ的方程;
(2)當(dāng)OB與圓O1相切時(shí),求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}是公比不等于-1的等比數(shù)列,且bn=an+an+1對(duì)一切正整數(shù)成立,求證{bn}也是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2
cos(x-
π
12
),x∈R,若cosθ=
3
5
,θ∈(
2
,2π),則f(θ-
12
)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知AC,BD為圓O:x2+y2=4的兩條互相垂直的弦,且垂足為M(1,
2
),則四邊形ABCD面積的最大值為(  )
A、5B、10C、15D、20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和為Sn
(1)若{an}是公差為d的等差數(shù)列,請(qǐng)寫出并推導(dǎo)Sn的計(jì)算公式;
(2)若an=n,求
1
S1
+
1
S2
+…+
1
Sn
的和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(
3
sinωx,1),
b
=(cosωx,0)ω>0,又函數(shù)f(x)=
b
•(
a
-k
b
)是以
π
2
為最小正周期的周期函數(shù).
(1)求函數(shù)f(x)的值域;
(2)若函數(shù)f(x)的最大值為
1
2
,則是否存在實(shí)數(shù)t,使得函數(shù)f(x)的圖象能由函數(shù)g(x)=t
a
b
的圖象經(jīng)過平移得到?若能,求出實(shí)數(shù)t,并說明如何平移,若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知a、b、c為△ABC的三個(gè)內(nèi)角A、B、C的對(duì)邊,a=2,且(2+b)(sinA-sinB)=(c-b)sinC,則△ABC面積的最大值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案