1.已知全集為R,集合M={-1,0,1,5},N={x|x2-x-2≥0},則M∩∁RN=( 。
A.{0,1}B.{-1,0,1}C.{0,1,5}D.{-1,1}

分析 化簡集合N,求出∁RN,再計算M∩∁RN.

解答 解:∵全集為R,集合M={-1,0,1,5},
N={x|x2-x-2≥0}={x|x≤-1或x≥2},
∴∁RN={x|-1<x<2},
∴M∩∁RN={0,1}.
故選:A.

點評 本題考查了集合的化簡與運算問題,是基礎(chǔ)題目.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.銳角三角形中,a=2bsinA.
①求角Β的大。
②若a=3$\sqrt{3}$,c=5,求邊b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知函數(shù)y=f(x)的圖象上任一點(x0,y0)處的切線方程為y-y0=(x0-2)(x${\;}_{0}^{2}$-1)(x-x0),那么函數(shù)y=f(x)的單調(diào)減區(qū)間是( 。
A.[-1,+∞)B.(-∞,2]C.(-∞,-1)和(1,2)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,且$\sqrt{3}$bsinA-acosB-2a=0.
(Ⅰ)求∠B的大小;
(Ⅱ)若b=$\sqrt{7}$,△ABC的面積為$\frac{\sqrt{3}}{2}$,求a,c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{1}{3}{x^3}$-4x+4.
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)求 函數(shù)f(x)閉區(qū)間[-2,m]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.設(shè)a∈R,則“a=4是“直線l1:ax+8y-3=0與直線l2:2x+ay-a=0平行”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=|x-a|+|x-2|,a>0.
(1)當a=3時,解不等式f(x)<4;
(2)若正實數(shù)a,b,c滿足a+b+c=1,且不等式f(x)$≥\frac{{a}^{2}+^{2}+{c}^{2}}{b+c}$對任意實數(shù)x都成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.已知集合A={(x,y)|y=x2,x>0},B={y|y=2x,x>0},則A∩B=(  )
A.B.(1,+∞)C.(2,4)D.{(2,4),(4,16)}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.判斷下列命題的為真命題.( 。
A.若a>b,c>d,則ac>bdB.若a>b>0,c>d>0,則$\frac{a}{c}$>$\fractvxj35v$
C.若a>b,c<d,則a-c>b-dD.若a>b,則an>bn,$\root{n}{a}$>$\root{n}$(n∈N+且n≥2)

查看答案和解析>>

同步練習冊答案