6.已知f(2x+1)=4x+2,求f(x)的解析式y(tǒng)=2x.

分析 直接利用配湊法,求解即可.

解答 解:f(2x+1)=4x+2=2(2x+1),∴f(x)=2x.
故答案為:y=2x

點(diǎn)評(píng) 本題考查函數(shù)的解析式的求法,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.動(dòng)點(diǎn)P從邊長(zhǎng)為1的正方形ABCD的頂點(diǎn)A出發(fā)順次經(jīng)過B,C,D再回到A,設(shè)x表示P點(diǎn)的行程,f(x)表示PA的長(zhǎng),g(x)表示△ABP的面積.
(1)求f(x)的表達(dá)式;
(2)求g(x)的表達(dá)式并作出g(x)的簡(jiǎn)圖.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在某項(xiàng)娛樂活動(dòng)的海選過程中評(píng)分人員需對(duì)同批次的選手進(jìn)行考核并評(píng)分,并將其得分作為該選手的成績(jī),成績(jī)大于等于60分的選手定為合格選手,直接參加第二輪比賽,不超過40分的選手將直接被淘汰成績(jī)?cè)冢?0,60)內(nèi)的選手可以參加復(fù)活賽,如果通過,也可以參加第二輪比賽.
(Ⅰ)已知成績(jī)合格的200名參賽選手成績(jī)的頻率分布直方圖如圖,估計(jì)這200名參賽選手成績(jī)的平均數(shù)和中位數(shù);
(Ⅱ)現(xiàn)有6名選手的海選成績(jī)分別為(單位:分)43,45,52,53,58,59,經(jīng)過復(fù)活賽后,有二名選手進(jìn)入到第二輪比賽,求這2名選手的海選成績(jī)均在(50,60)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已橢圓方程為$\frac{x^2}{25}+\frac{y^2}{16}=1$,則該橢圓的焦距為(  )
A.10B.8C.6D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知$θ∈(0,\frac{π}{2})$,則曲線$\frac{x^2}{9}-\frac{y^2}{{4{{sin}^2}θ}}=1$與曲線$\frac{x^2}{{9-4{{cos}^2}θ}}-\frac{y^2}{4}=1$的( 。
A.離心率相等B.焦距相等C.虛軸長(zhǎng)相等D.頂點(diǎn)相同

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.$\frac{1}{2}sin{15°}-\frac{{\sqrt{3}}}{2}cos{15°}$的值是( 。
A.$\frac{1}{2}$B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{2}}}{2}$D.-$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}x+y≥3\\ 2x-y≤0\end{array}\right.$,若y≥k(x+2)恒成立,則實(shí)數(shù)k的最大值是( 。
A.-1B.$-\frac{2}{3}$C.$\frac{3}{2}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)=x7-ax5+bx3+cx+2,若f(-3)=-3,則f(3)=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.tan($\frac{π}{6}$-α)=$\frac{\sqrt{3}}{3}$,則tan($\frac{5π}{6}$+α)=( 。
A.-$\frac{\sqrt{3}}{3}$B.$\frac{\sqrt{3}}{3}$C.$\sqrt{3}$D.-$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案