若數(shù)列{an}的前n項和Sn=n2-10n(n=1,2,3,…),則數(shù)列{nan}中數(shù)值最小的項是第
3
3
項.
分析:利用:當(dāng)n=1時,a1=S1=1-10=-9;當(dāng)n≥2時,an=Sn-Sn-1,即可得出通項公式an.即可得到nan,再利用二次函數(shù)的性質(zhì)即可得出.
解答:解:當(dāng)n=1時,a1=S1=1-10=-9,
當(dāng)n≥2時,an=Sn-Sn-1=n2-10n-[(n-1)2-10(n-1)]=2n-11,
上式對于n=1時也成立.∴an=2n-11.
∴nan=n(2n-11)=2n2-11=2(n-
11
4
)2-
121
8
,
因此當(dāng)n=3時,數(shù)列{nan}中數(shù)值取得最小值-15.
故答案為3.
點評:熟練掌握an=
S1,當(dāng)n=1時
Sn-Sn-1,當(dāng)n≥2時
j及其二次函數(shù)的性質(zhì)是解題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知點P1(a1,b1),P2(a2,b2),…,Pn(an,bn)(n∈N*)都在函數(shù)y=log
12
x
的圖象上.
(Ⅰ)若數(shù)列{bn}是等差數(shù)列,求證數(shù)列{an}為等比數(shù)列;
(Ⅱ)若數(shù)列{an}的前n項和為Sn=1-2-n,過點Pn,Pn+1的直線與兩坐標(biāo)軸所圍成三角形面積為cn,求使cn≤t對n∈N*恒成立的實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下有四種說法:
(1)若p∨q為真,p∧q為假,則p與q必為一真一假;
(2)若數(shù)列{an}的前n項和為Sn=n2+n+1,n∈N*,則an=2n,n∈N*;
(3)若f′(x0)=0,則f(x)在x=x0處取得極值;
(4)由變量x和y的數(shù)據(jù)得到其回歸直線方程l: 
y
=bx+a
,則l一定經(jīng)過點P(
.
x
, 
.
y
)

以上四種說法,其中正確說法的序號為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn,則下列命題:
(1)若數(shù)列{an}是遞增數(shù)列,則數(shù)列{Sn}也是遞增數(shù)列;
(2)數(shù)列{Sn}是遞增數(shù)列的充要條件是數(shù)列{an}的各項均為正數(shù);
(3)若{an}是等差數(shù)列(公差d≠0),則S1•S2…Sk=0的充要條件是a1•a2…ak=0.
(4)若{an}是等比數(shù)列,則S1•S2…Sk=0(k≥2,k∈N)的充要條件是an+an+1=0.
其中,正確命題的個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}的前n項和為Sn,且有4Sn=an2+4n-1,n∈N*,
(1)求a1的值;
(2)求證:(an-2)2-an-12=0(n≥2);
(3)求出所有滿足條件的數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(x,y)是區(qū)域
x+2y≤2n
x≥0
y≥0
,(n∈N*)內(nèi)的點,目標(biāo)函數(shù)z=x+y,z的最大值記作zn.若數(shù)列{an}的前n項和為Sn,a1=1,且點(Sn,an)在直線zn=x+y上.
(Ⅰ)證明:數(shù)列{an-2}為等比數(shù)列;
(Ⅱ)求數(shù)列{Sn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案