分析 (1)利用等比數(shù)列的定義證明即可;
(2)利用復(fù)數(shù)的運(yùn)算法則,即可得出.
解答 (1)證明:∵a,b,c成等比數(shù)列,∴b2=ac,
∴an•cn=(ac)n=(b2)n=(bn)2,∴an,bn,cn也成等比數(shù)列.…(4分)
(2)解:歸納得到的結(jié)論為|z1•z2|=|z1|•|z2|.…(7分)
下面給出證明:設(shè)z1=a+bi,z2=c+di,則z1•z2=ac-bd+(ad+bc)i,
∴$|{{z_1}•{z_2}}|=\sqrt{{{({ac-bd})}^2}+{{({ad+bc})}^2}}=\sqrt{{a^2}{c^2}+{b^2}{d^2}+{a^2}{d^2}+{b^2}{c^2}}$,
又$|{z_1}|•|{z_2}|=\sqrt{{a^2}+{b^2}}\sqrt{{c^2}+{d^2}}=\sqrt{{a^2}{c^2}+{a^2}{d^2}+{b^2}{c^2}+{b^2}{d^2}}$,∴|z1•z2|=|z1|•|z2|.…(12分)
點(diǎn)評(píng) 本題考查等比數(shù)列的證明,考查類比推理,考查學(xué)生的計(jì)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | -1 | C. | 3 | D. | -3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ($\frac{1}{3}$,1) | B. | [1,4] | C. | ($\frac{1}{3}$,4] | D. | [1,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\frac{\sqrt{3}}{2}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com