【題目】如圖,在平面直角坐標(biāo)系中,過軸正方向上一點(diǎn)任作一直線,與拋物線相交于兩點(diǎn),一條垂直于軸的直線分別與線段和直線交于點(diǎn).

(1)若,求的值;

(2)若為線段的中點(diǎn),求證:直線與該拋物線有且僅有一個(gè)公共點(diǎn).

(3)若直線的斜率存在,且與該拋物線有且僅有一個(gè)公共點(diǎn),試問是否一定為線段的中點(diǎn)?說明理由.

【答案】1.(2)見解析(3的中點(diǎn).見解析

【解析】

(1)聯(lián)立方程利用韋達(dá)定理得到,,再根據(jù),計(jì)算得到答案.

2)計(jì)算.,設(shè)上, 且滿足,故, 與聯(lián)立得, 得到答案.

3)設(shè),計(jì)算得到,,. 與聯(lián)立得到得到答案.

(1) 設(shè),與聯(lián)立, 得. 故

從而,根據(jù)解得到,

舍去負(fù)值, 得.

(2) , 故..

設(shè)上, 且滿足.

, 故直線的方程為,

.

, 與聯(lián)立得,

故直線與該拋物線有且僅有一個(gè)公共點(diǎn).

(3) 設(shè), 這里, 由(2)知過的與有且僅有一個(gè)公共點(diǎn)的斜率存在的直線必為.與相交, 得.

. , 所以. 與聯(lián)立,

, 即, 故.

這樣, 即的中點(diǎn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖三棱柱,分別是的中點(diǎn),四邊形是菱形,且平面平面.

(Ⅰ)求證:四邊形為矩形;

(Ⅱ)若,體積為,求三棱柱的側(cè)面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(1,2)在拋物線C:y2=2px(p>0)上.

(Ⅰ)求C的方程;

(Ⅱ)斜率為﹣1的直線與C交于異于點(diǎn)P的兩個(gè)不同的點(diǎn)M,N,若直線PM,PN分別與x軸交于A,B兩點(diǎn),求證:△PAB為等腰三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù) .

1)當(dāng)時(shí), 上恒成立,求實(shí)數(shù)的取值范圍;

2)當(dāng)時(shí),若函數(shù)上恰有兩個(gè)不同的零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),記

1)證明:有且僅有一個(gè)零點(diǎn);

2)記的零點(diǎn)為,若內(nèi)有兩個(gè)不等實(shí)根,判斷的大小,并給出對應(yīng)的證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】現(xiàn)代社會(huì)的競爭,是人才的競爭,各國、各地區(qū)、各單位都在廣納賢人,以更好更快的促進(jìn)國家、地區(qū)、單位的發(fā)展.某單位進(jìn)行人才選拔考核,該考核共有三輪,每輪都只設(shè)置一個(gè)項(xiàng)目問題,能正確解決項(xiàng)目問題者才能進(jìn)入下一輪考核;不能正確解決者即被淘汰.三輪的項(xiàng)目問題都正確解決者即被錄用.已知A選手能正確解決第一、二、三輪的項(xiàng)目問題的概率分別為、,且各項(xiàng)目問題能否正確解決互不影響.

1)求A選手被淘汰的概率;

2)設(shè)該選手在選拔中正確解決項(xiàng)目問題的個(gè)數(shù)為,求的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中為自然對數(shù)的底數(shù).

(Ⅰ)若曲線在點(diǎn)處的切線與直線垂直,求實(shí)數(shù)的值;

(Ⅱ)求函數(shù)的單調(diào)區(qū)間;

(Ⅲ)用表示,中的較大者,記函數(shù).若函數(shù)內(nèi)恰有2個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C:l(a>b>0)經(jīng)過點(diǎn)(,1),且離心率e.

(1)求橢圓C的方程;

(2)若直線l與橢圓C相交于AB兩點(diǎn),且滿足∠AOB=90°(O為坐標(biāo)原點(diǎn)),求|AB|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在等腰中,,,分別為,的中點(diǎn),的中點(diǎn),在線段上,且。將沿折起,使點(diǎn)的位置(如圖2所示),且。

(1)證明:平面;

(2)求平面與平面所成銳二面角的余弦值

查看答案和解析>>

同步練習(xí)冊答案