6.已知復(fù)數(shù)z=1+2i,則$\overline z$=( 。
A.1-2iB.5+4iC.1D.2

分析 由已知直接利用共軛復(fù)數(shù)的概念得答案.

解答 解:∵z=1+2i,∴$\overline z$=1-2i.
故選:A.

點(diǎn)評 本題考查復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.如圖,設(shè)長方體ABCD-A1B1C1D1中,AB=BC=1,AA1=2,Q是AA1的中點(diǎn),點(diǎn)P在線段B1D1上;
(1)試在線段B1D1上確定點(diǎn)P的位置,使得異面直線QB與DP所成角為60°,并請說明
你的理由;
(2)在滿足(1)的條件下,求四棱錐Q-DBB1P的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知函數(shù)f(x)是定義在R上的偶函數(shù),且在(0,+∞)上單調(diào)遞增,若對于任意x∈R,$f({{{log}_2}a})≤f({{x^2}-2x+2})$恒成立,則a的取值范圍是( 。
A.(0,1]B.$[{\frac{1}{2},2}]$C.(0,2]D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某班主任為了對本班學(xué)生的數(shù)學(xué)和物理成績進(jìn)行分析,隨機(jī)抽取了8位學(xué)生的數(shù)學(xué)和物理成績?nèi)缦卤恚?br />
學(xué)生編號12345678
數(shù)學(xué)分?jǐn)?shù)x6065707580859095
物理分?jǐn)?shù)y7277808488909395
(Ⅰ)通過對樣本數(shù)據(jù)進(jìn)行初步處理發(fā)現(xiàn),物理成績y與數(shù)學(xué)成績x之間具有線性相關(guān)性,求y與x的線性回歸方程(系數(shù)精確到0.01).
(Ⅱ)當(dāng)某學(xué)生的數(shù)學(xué)成績?yōu)?00分時(shí),估計(jì)該生的物理成績.(精確到0.1分)
參考公式:回歸直線的方程是:$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y)}}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{x}$.
參考數(shù)據(jù):$\sum_{i=1}^{8}({x}_{1}-\overline{x})^{2}$=1050,$\sum_{i=1}^{8}({y}_{i}-\overline{y})^{2}$≈457,$\sum_{i=1}^{8}({x}_{1}-\overline{x})({y}_{1}-\overline{y})$≈688,$\sqrt{1050}$≈32.4.$\sqrt{457}$≈21.4,$\sqrt{550}$≈23.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知平面向量$\overrightarrow{a}$=(4sin(π-α),$\frac{3}{2}$),$\overrightarrow{a}$=(cos$\frac{π}{3}$,cosα),$\overrightarrow{a}$⊥$\overrightarrow$.
(Ⅰ)求tanα的值;
(Ⅱ)求$\frac{1}{1+sinαcosα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.我國古代數(shù)學(xué)專著《孫子算法》中有“今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二,問物幾何?”如果此物數(shù)量在100至200之間,那么這個(gè)數(shù)128.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知數(shù)列{an}滿足an+1-an=2,a1=-5,則|a1|+|a2|+…+|a6|=( 。
A.9B.15C.18D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.如圖,已知四邊形ABEF于ABCD分別為正方形和直角梯形,平面ABEF⊥平面ABCD,AB=BC=$\frac{1}{2}$AD=1,AB⊥AD,BC∥AD,點(diǎn)M是棱ED的中點(diǎn).
(1)求證:CM∥平面ABEF;
(2)求三棱錐D-ACF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知兩個(gè)隨機(jī)變量x,y之間的相關(guān)關(guān)系如表所示:
x-4-2124
y-5-3-1-0.51
根據(jù)上述數(shù)據(jù)得到的回歸方程為$\widehat{y}$=$\widehat$x+$\widehat{a}$,則大致可以判斷( 。
A.$\widehat{a}$>0,$\widehat$>0B.$\widehat{a}$>0,$\widehat$<0C.$\widehat{a}$<0,$\widehat$>0D.$\widehat{a}$<0,$\widehat$<0

查看答案和解析>>

同步練習(xí)冊答案