分析 (1)根據(jù)題意,利用韋達(dá)定理列出關(guān)系式,利用完全平方公式及同角三角函數(shù)間的基本關(guān)系化簡求出b的值即可;
(2)由b的值,利用完全平方公式求出sinθ與cosθ的值,原式通分并利用同角三角函數(shù)間的基本關(guān)系化簡,將sinθ與cosθ的值代入計算即可求出值.
解答 解:(1)∵169x2-bx+60=0的兩根為sinθ、cosθ,
∴sinθ+cosθ=$\frac{169}$,sinθcosθ=$\frac{60}{169}$>0,
∵$θ∈({\frac{π}{4}\;,\;\;\frac{3π}{4}})$,
∴θ+$\frac{π}{4}$∈($\frac{π}{2}$,π),即sinθ+cosθ=$\sqrt{2}$sin(θ+$\frac{π}{4}$)>0,
∴(sinθ+cosθ)2=sin2θ+cos2θ+2sinθcosθ=1+2×$\frac{60}{169}$=($\frac{169}$)2,
解得:b=±221(負(fù)值舍去),則b=221;
(2)∵(sinθ-cosθ)2=sin2θ+cos2θ-2sinθcosθ=1-2×$\frac{60}{169}$=$\frac{49}{169}$,
∴sinθ-cosθ=$\frac{7}{13}$,
∵sinθ+cosθ=$\frac{17}{13}$,
∴sinθ=$\frac{12}{13}$,cosθ=$\frac{5}{13}$,
則原式=$\frac{si{n}^{2}θ+1-co{s}^{2}θ}{sinθ(1-cosθ)}$=$\frac{2sinθ}{1-cosθ}$=3.
點評 此題考查了同角三角函數(shù)間基本關(guān)系的運用,以及完全平方公式的運用,熟練掌握基本關(guān)系是解本題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $\frac{{\sqrt{3}}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | |r|≤1;r越大,相關(guān)程度越大;反之,相關(guān)程度越小 | |
B. | 線性回歸方程對應(yīng)的直線$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$至少經(jīng)過其樣本數(shù)據(jù)點(x1,y1),(x2,y2),(x3,y3),(xn,yn)中的一個點 | |
C. | 在殘差圖中,殘差點分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高 | |
D. | 在回歸分析中,相關(guān)指數(shù)R2為0.98的模型比相關(guān)指數(shù)R2為0.80的模型擬合的效果差 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com