【題目】已知, , .
(1)當時,試比較與的大小關系;
(2)猜想與的大小關系,并給出證明.
【答案】21.解:(1) 當時, , ,所以;
當時, , ,所以;
當時, , ,所以.………3分
(2)由(1),猜想,下面用數(shù)學歸納法給出證明:
①當時,不等式顯然成立.
②假設當時不等式成立,即,....6分
那么,當時,,
因為,
所以.
由①、②可知,對一切,都有成立.………………12分
【解析】試題分析:(1)分別計算,在比較大。2)由(1)猜想.用數(shù)學歸納法證明.
試題解析:(1)當時, ,所以;
當時, ,所以;
當時, ,所以.
(2)由(1)猜想,下面用數(shù)學歸納法給出證明:
當時,不等式顯然成立.
假設當時不等式成立,即,
那么當時, ,
因為,
所以,
綜上可得,對一切,都有成立.
科目:高中數(shù)學 來源: 題型:
【題目】設等差數(shù)列的前項和為,,若且,數(shù)列的前項和為,且滿足.
(Ⅰ)求數(shù)列的通項公式及數(shù)列的前項和;
(Ⅱ)是否存在非零實數(shù),使得數(shù)列為等比數(shù)列?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若曲線在點處的切線與直線垂直,求函數(shù)的單調區(qū)間;
(2)若對都有成立,試求實數(shù)的取值范圍;
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定圓,定直線,過的一條動直線與直線相交于,與圓相交于,兩點,
(1)當與垂直時,求出點的坐標,并證明:過圓心;
(2)當時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《中國好聲音( )》是由浙江衛(wèi)視聯(lián)合星空傳媒旗下燦星制作強力打造的大型勵志專業(yè)音樂評論節(jié)目,于2012年7月13日在浙江衛(wèi)視播出.每期節(jié)目有四位導師參加.導師背對歌手,當每位參賽選手演唱完之前有導師為其轉身,則該選手可以選擇加入為其轉身的導師的團隊中接受指導訓練.已知某期《中國好聲音》中,6位選手唱完后,四位導師為其轉身的情況如下表所示:
導師轉身人數(shù)(人) | 4 | 3 | 2 | 1 |
獲得相應導師轉身的選手人數(shù)(人) | 1 | 2 | 2 | 1 |
現(xiàn)從這6位選手中隨機抽取兩人考查他們演唱完后導師的轉身情況.
(1)求選出的兩人導師為其轉身的人數(shù)和為4的概率;
(2)記選出的2人導師為其轉身的人數(shù)之和為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),( 為實數(shù)),
(1)討論函數(shù)的單調區(qū)間;
(2)求函數(shù)的極值;
(3)求證:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),曲線在點處的切線與直線垂直.
注:為自然對數(shù)的底數(shù).
(1)若函數(shù)在區(qū)間上存在極值,求實數(shù)的取值范圍;
(2)求證:當時,.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解防震知識在中學生中的普及情況,某地震部門命制了一份滿分為10分的問卷到紅星中學做問卷調查.該校甲、乙兩個班各被隨機抽取名學生接受問卷調查,甲班名學生得分為5,8,9,9,9乙班5名學生得分為6,7,8,9,10.
(Ⅰ)請你估計甲乙兩個班中,哪個班的問卷得分更穩(wěn)定一些;
(Ⅱ)如果把乙班5名學生的得分看成一個總體,并用簡單隨機抽樣方法從中抽取樣本容量為2的樣本,求樣本平均數(shù)與總體平均數(shù)之差的絕對值不小于1的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖所示,已知圓的圓心在直線上,且該圓存在兩點關于直線對稱,又圓與直線相切,過點的動直線與圓相交于兩點,是的中點,直線與相交于點.
(1)求圓的方程;
(2)當時,求直線的方程;
(3)是否為定值?如果是,求出其定值;如果不是,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com