9.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=2,|$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow$=( 。
A.2B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.$\frac{1}{2}$

分析 根據(jù)數(shù)量積的計算公式便可求出$\overrightarrow{a}•\overrightarrow$的值.

解答 解:根據(jù)條件:
$\overrightarrow{a}•\overrightarrow=|\overrightarrow{a}||\overrightarrow|cos60°=2×2×\frac{1}{2}=2$.
故選:A.

點評 考查向量夾角的概念,以及向量數(shù)量積的計算公式.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.“sin$\frac{θ}{2}$=0”是“sinθ=0”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)定義在[-2,2]上的函數(shù)f(x)是減函數(shù),若f(m-1)<f(-m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點P(x,y)在圓x2+y2=1上運動,則$\frac{y}{x+2}$的最大值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.設(shè)x,y滿足約束條件$\left\{\begin{array}{l}{\frac{x}{3a}+\frac{y}{4a}≤1}\\{y≥0}\\{x≥0}\end{array}\right.$,若z=$\frac{x+2y+3}{x+1}$的最小值為$\frac{3}{2}$,則a的值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.log2$\frac{4}{7}$+log27=( 。
A.-2B.2C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=x+$\frac{1}{x}$,g(x)=2x+$\frac{1}{{2}^{x}}$,則下列結(jié)論正確的是(  )
A.f(x)是奇函數(shù),g(x)是偶函數(shù)B.f(x)是偶函數(shù),g(x)是奇函數(shù)
C.f(x)和g(x)都是偶函數(shù)D.f(x)和g(x)都是奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.平面直角坐標(biāo)系中,△ABC的三個頂點為A(-3,0),B(2,1),C(-2,3),求:
(Ⅰ)BC邊上高線AH所在直線的方程;
(Ⅱ)若直線l過點B且橫、縱截距互為相反數(shù),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若二次函數(shù)f(x)=(m-1)x2+2mx+1是偶函數(shù),則f(x)在區(qū)間(-∞,0]上是(  )
A.增函數(shù)B.先增后減函數(shù)C.減函數(shù)D.先減后增函數(shù)

查看答案和解析>>

同步練習(xí)冊答案