18.對(duì)于函數(shù)f(x),若在定義域內(nèi)存在實(shí)數(shù)x滿足f(-x)=-f(x),則稱(chēng)f(x)為“局部奇函數(shù)”,若已知f(x)=x2-2mx+m2-4為定義域R上的“局部奇函數(shù)”,則實(shí)數(shù)m的取值范圍是(  )
A.[0,2]B.(-2,2)C.[-2,2]D.[-2,0]

分析 由題意可知關(guān)于x的方程f(-x)=-f(x)有解,代入整理得:x2+m2-4=0,由△≥0,即可求得實(shí)數(shù)m的取值范圍.

解答 解:f(x)為“局部奇函數(shù)”等價(jià)于關(guān)于x的方程f(-x)=-f(x)有解.
即x2+2mx+m2-4=-(x2-2mx+m2-4),整理得:x2+m2-4=0,
∴m2-4≤0,解得:-2≤m≤2,
故選:C.

點(diǎn)評(píng) 本題主要考查函數(shù)的新定義,利用函數(shù)的新定義得到方程有解的條件,一元二次方程有解的充要條件,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.設(shè)f(x)=alnx+$\sqrt{x}$-1,
(1)求f(x)的單調(diào)區(qū)間
(2)證明:當(dāng)a=1,x>1時(shí),f(x)<$\frac{3}{2}$(x-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)集合A={-2,-1,0,1,2},集合B={x|x(x-2)≤0},則A∩B等于( 。
A.{1}B.{-2,-1}C.{0,1,2}D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)是在定義(0,+∞)上的增函數(shù),且滿足f(xy)=f(x)+f(y)且f(2)=1.試回答下列問(wèn)題:
(1)證明:f(8)=3;
(2)求不等式f(x)-f(x+2)>3的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知球O的半徑為3,CD為球的直徑,A,B為球面上兩點(diǎn),且AB長(zhǎng)為$3\sqrt{2}$,則四面體ABCD的體積是最大值為( 。
A.8B.$6\sqrt{2}$C.9D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.復(fù)數(shù)Z滿足(1-2i)z=(1+i)2,則z對(duì)應(yīng)復(fù)平面上的點(diǎn)的坐標(biāo)為( 。
A.(-$\frac{4}{5}$,$\frac{2}{5}$)B.(-$\frac{2}{5}$,$\frac{3}{5}$)C.($\frac{4}{5}$,-$\frac{2}{5}$)D.($\frac{2}{5}$,$\frac{3}{5}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.設(shè)雙曲線經(jīng)過(guò)點(diǎn)(2,-3),且與$\frac{y^2}{9}$-x2=1具有相同的漸近線,則雙曲線的標(biāo)準(zhǔn)方程是$\frac{x^2}{3}-\frac{y^2}{27}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤1}\\{{x}^{2}+x-2,x>1}\end{array}\right.$,則f(0)=1,f[f(-1)]=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.從某批零件中抽取50個(gè),然后再?gòu)?0個(gè)中抽出40個(gè)進(jìn)行檢查,發(fā)現(xiàn)合格品有38個(gè),則該批產(chǎn)品的合格率為( 。
A.38%B.76%C.90%D.95%

查看答案和解析>>

同步練習(xí)冊(cè)答案