用長為90cm,寬為48cm的長方形鐵皮做一個無蓋的容器,先在四角分別截去一個小正方形,然后把四邊翻轉(zhuǎn)90°角,再焊接而成(如圖),問該容器的高為多少時,容器的容積最大?最大容積是多少?

 

 

當高為10,最大容積為19600.

【解析】

試題分析:首先分析題目求長為90cm,寬為48cm的長方形鐵皮做一個無蓋的容器當容器的高為多少時,容器的容積最大.故可設(shè)容器的高為x,體積為V,求出v關(guān)于x的方程,然后求出導(dǎo)函數(shù),分析單調(diào)性即可求得最值.

【解析】
根據(jù)題意可設(shè)容器的高為x,容器的體積為V,

則有V=(90﹣2x)(48﹣2x)x=4x3﹣276x2+4320x,(0<x<24)

求導(dǎo)可得到:V′=12x2﹣552x+4320

由V′=12x2﹣552x+4320=0得x1=10,x2=36.

所以當x<10時,V′>0,

當10<x<36時,V′<0,

當x>36時,V′>0,

所以,當x=10,V有極大值V(10)=19600,又V(0)=0,V(24)=0,

所以當x=10,V有最大值V(10)=19600

故答案為當高為10,最大容積為19600.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:[同步]2014新人教A版選修4-1 2.2圓內(nèi)接四邊形性質(zhì)與判定定理(解析版) 題型:填空題

(2013•珠海一模)(幾何證明選講選做題)

如圖所示,等腰三角形ABC的底邊AC長0為6,其外接圓的半徑長為5,則三角形ABC的面積是 .

 

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-2 3.2復(fù)數(shù)的四則運算練習(xí)卷(解析版) 題型:選擇題

在復(fù)平面內(nèi),復(fù)數(shù)z=sin2+icos2對應(yīng)的點位于( )

A.第一象限 B.第二象限 C.第三象限 D.第四象限

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-2 2.2直接證明與間接證明練習(xí)卷(解析版) 題型:填空題

設(shè)x,y,z是空間的不同直線或不同平面,且直線不在平面內(nèi),下列條件中能保證“若x⊥z,且y⊥z,則x∥y”為真命題的是 (填所有正確條件的代號)

①x為直線,y,z為平面;

②x,y,z為平面;

③x,y為直線,z為平面;

④x,y為平面,z為直線;

⑤x,y,z為直線.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-2 2.2直接證明與間接證明練習(xí)卷(解析版) 題型:選擇題

設(shè)x,y,z∈(0,+∞),a=x+,b=y+,c=z+,則a,b,c三數(shù)( )

A.至少有一個不大于2 B.都小于2

C.至少有一個不小于2 D.都大于2

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-1 3.4導(dǎo)數(shù)在實際生活中的應(yīng)用練習(xí)卷(解析版) 題型:填空題

設(shè)底為等邊三角形的直棱柱的體積為V,那么其表面積最小時,底面邊長為 .

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-1 3.4導(dǎo)數(shù)在實際生活中的應(yīng)用練習(xí)卷(解析版) 題型:填空題

某商品一件的成本為30元,在某段時間內(nèi),若以每件x元出售,可賣出(200﹣x)件,當每件商品的定價為 元時,利潤最大.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-1 2.5圓錐曲線與方程練習(xí)卷(解析版) 題型:解答題

將曲線log2x+log2y=2沿x、y軸﹣分別向右平移兩個單位,向上平移一個單位,此時直線x+y+a=0與此曲線僅有一個公共點,求實數(shù)a的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:[同步]2014年蘇教版選修1-1 2.1圓錐曲線練習(xí)卷(解析版) 題型:填空題

若直線x﹣y=2與拋物線y2=4x交于A、B兩點,則線段AB的中點坐標是 .

 

查看答案和解析>>

同步練習(xí)冊答案