【題目】某林區(qū)的森林蓄積量每年比上一年平均增長9.5%,要增長到原來的x倍,需經(jīng)過y年,則函數(shù)y=f(x)的圖像大致為( )
A. B. C. D.
【答案】D
【解析】應(yīng)選B
分析:根據(jù)某林區(qū)的森林蓄積量每年比上一年平均增長9.5%,可得經(jīng)過y年,森林蓄積量,利用要增長到原來的x倍,需經(jīng)過y年,可建立方程,從而可判斷.
解答:解:設(shè)原來森林蓄積量為a
∵某林區(qū)的森林蓄積量每年比上一年平均增長9.5%,
∴一年后,森林蓄積量為a(1+9.5%)
兩年后,森林蓄積量為a(1+9.5%)2,
經(jīng)過y年,森林蓄積量為a(1+9.5%)y,
∵要增長到原來的x倍,需經(jīng)過y年,
∴a(1+9.5%)y=ax
∴1.095y=x
將x,y互換,可得反函數(shù)為y=1.095x,
∴函數(shù)為指數(shù)函數(shù),且為增函數(shù),故選B
點評:本題重點考查函數(shù)模型的構(gòu)建,考查反函數(shù),判斷函數(shù)的類型是關(guān)鍵.
科目:高中數(shù)學 來源: 題型:
【題目】某商場經(jīng)營一批進價為元/臺的小商品,經(jīng)調(diào)查得知如下數(shù)據(jù).若銷售價上下調(diào)整,銷售量和利潤大體如下:
銷售價(元/臺) | ||||
日銷售量(臺) | ||||
日銷售額(元) | ||||
日銷售利潤(元) |
(1)在下面給出的直角坐標系中,根據(jù)表中的數(shù)據(jù)描出實數(shù)對的對應(yīng)點,并寫出與的一個函數(shù)關(guān)系式;
(2)請把表中的空格里的數(shù)據(jù)填上;
(3)根據(jù)表中的數(shù)據(jù)求與的函數(shù)關(guān)系式,并指出當銷售單價為多少元時,才能獲得最大日銷售利潤?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC的三個內(nèi)角A、B、C所對的邊分別是a、b、c,向量m=(cos B,cos C),n=(2a+c,b),且m⊥n.
(1)求角B的大;
(2)若b=,求a+c的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4;坐標系與參數(shù)方程
在直角坐標系中,直線的參數(shù)方程為(為參數(shù)).在以坐標原點為極點, 軸正半軸為極軸的極坐標中,曲線.
(Ⅰ)求直線的普通方程和曲線的直角坐標方程.
(Ⅱ)求曲線上的點到直線的距離的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某企業(yè)生產(chǎn)的某種產(chǎn)品被檢測出其中一項質(zhì)量指標存在問題.該企業(yè)為了檢查生產(chǎn)該產(chǎn)品的甲,乙兩條流水線的生產(chǎn)情況,隨機地從這兩條流水線上生產(chǎn)的大量產(chǎn)品中各抽取50件產(chǎn)品作為樣本,測出它們的這一項質(zhì)量指標值.若該項質(zhì)量指標值落在內(nèi),則為合格品,否則為不合格品.表1是甲流水線樣本的頻數(shù)分布表,圖1是乙流水線樣本的頻率分布直方圖.
(Ⅰ)根據(jù)圖1,估計乙流水線生產(chǎn)產(chǎn)品該質(zhì)量指標值的中位數(shù);
(Ⅱ)若將頻率視為概率,某個月內(nèi)甲,乙兩條流水線均生產(chǎn)了5000件產(chǎn)品,則甲,乙兩條流水線分別生產(chǎn)出不合格品約多少件?
(Ⅲ)根據(jù)已知條件完成下面列聯(lián)表,并回答是否有85%的把握認為“該企業(yè)生產(chǎn)的這種產(chǎn)品的質(zhì)量指標值與甲,乙兩條流水線的選擇有關(guān)”?
甲生產(chǎn)線 | 乙生產(chǎn)線 | 合計 | |
合格品 | |||
不合格品 | |||
合計 |
附:(其中為樣本容量)
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,底面是長方形,側(cè)棱底面,且,過D作于F,過F作交 PC于E.
(Ⅰ)證明:平面PBC;
(Ⅱ)求平面與平面所成二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,已知四棱錐的底面為矩形,D為的中點,AC⊥平面BCC1B1.
(Ⅰ)證明:AB//平面CDB1;
(Ⅱ)若AC=BC=1,BB1=,
(1)求BD的長;
(2)求B1D與平面ABB1所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱柱ABCD-A1B1C1D1中,已知平面AA1C1C⊥平面ABCD,且AB=BC=CA=,AD=CD=1.
(1)求證:BD⊥AA1.
(2)在棱BC上取一點E,使得AE∥平面DCC1D1,求的值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某同學用“五點法”畫函數(shù)f(x)=Asin(ωx+φ)在某一個周期內(nèi)的圖象時,列表并填入的數(shù)據(jù)如下表:
x | x1 | x2 | x3 | ||
ωx+φ | 0 | π | 2π | ||
Asin(ωx+φ) | 0 | 2 | 0 | -2 | 0 |
(1)求x1,x2,x3的值及函數(shù)f(x)的表達式;
(2)將函數(shù)f(x)的圖象向左平移π個單位,可得到函數(shù)g(x)的圖象,求函數(shù)y=f(x)·g(x)在區(qū)間的最小值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com