11.已知△OBC中,點A是線段BC的中點,點D是線段OB的一個靠近B的三等分點,設(shè)$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AO}$=$\overrightarrow$.
(1)用向量$\overrightarrow{a}$與$\overrightarrow$表示向量$\overrightarrow{OC},\overrightarrow{CD}$;
(2)若$\overrightarrow{OE}=\frac{3}{5}\overrightarrow{OA}$,判斷C、D、E是否共線,并說明理由.

分析 (1)由平面向量的加法法則能用向量$\overrightarrow{a}$與$\overrightarrow$表示向量$\overrightarrow{OC},\overrightarrow{CD}$.
(2)由$\overrightarrow{CE}=\overrightarrow{CO}+\overrightarrow{OE}=a+b+\frac{3}{5}({-b})=a+\frac{2}{5}b$,能求出C、D、E三點不共線.

解答 解:(1)∵$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AO}$=$\overrightarrow$.
∴$\overrightarrow{OC}$=$\overrightarrow{OA}$+$\overrightarrow{AC}$=-$\overrightarrow{a}-\overrightarrow$,
$\overrightarrow{CD}$=$\overrightarrow{CB}$+$\overrightarrow{BD}$=$\overrightarrow{CB}$+$\frac{1}{3}$$\overrightarrow{BO}$=$\overrightarrow{CB}$+$\frac{1}{3}$($\overrightarrow{BA}$+$\overrightarrow{AO}$)
=2$\overrightarrow{a}$+$\frac{1}{3}$(-$\overrightarrow{a}+\overrightarrow$)
=$\frac{5}{3}\overrightarrow{a}+\frac{1}{3}\overrightarrow$,
(2)∵$\overrightarrow{CE}=\overrightarrow{CO}+\overrightarrow{OE}=a+b+\frac{3}{5}({-b})=a+\frac{2}{5}b$,
∴$不存在實數(shù)λ,滿足\overrightarrow{CE}=λ\overrightarrow{CD}$,
∴C、D、E三點不共線.

點評 本題考查向量的求法,考查三點是否共線的判斷,是中檔題,解題時要認(rèn)真審題,注意平面向量的運算法則的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知函數(shù)f(x)=|x-1|,若存在x1,x2∈[a,b],且x1<x2,使f(x1)≥f(x2)成立,則以下對實數(shù)a,b的描述正確的是( 。
A.a<1B.a≥1C.b≤1D.b≥1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.如圖,在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的左焦點為F,右頂點為A,動點M為右準(zhǔn)線上一點(異于右準(zhǔn)線與x軸的交點),設(shè)線段FM交橢圓C于點P,已知橢圓C的離心率為$\frac{2}{3}$,點M的橫坐標(biāo)為$\frac{9}{2}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若∠FPA為直角,求P點坐標(biāo);
(3)設(shè)直線PA的斜率為k1,直線MA的斜率為k2,求k1•k2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知曲線C:y=sinx+$\sqrt{3}$cosx在點P(x0,y0)(-$\frac{π}{3}$<x0<0)處的切線斜率為$\sqrt{3}$,則曲線C在點P處的切線方程為$\sqrt{3}$x-y-2+$\frac{\sqrt{3}π}{6}$=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知兩個不相等的非零向量$\overrightarrow{a}$、$\overrightarrow$兩組向量$\overrightarrow{{x}_{1}}$、$\overrightarrow{{x}_{2}}$、$\overrightarrow{{x}_{3}}$、$\overrightarrow{{x}_{4}}$、$\overrightarrow{{x}_{5}}$和$\overrightarrow{{y}_{1}}$、$\overrightarrow{{y}_{2}}$、$\overrightarrow{{y}_{3}}$、$\overrightarrow{{y}_{4}}$、$\overrightarrow{{y}_{5}}$均由2個$\overrightarrow{a}$和3個$\overrightarrow$排列而成.記S=$\overrightarrow{{x}_{1}}$•$\overrightarrow{{y}_{1}}$+$\overrightarrow{{x}_{2}}$•$\overrightarrow{{y}_{2}}$+$\overrightarrow{{x}_{3}}$•$\overrightarrow{{y}_{3}}$+$\overrightarrow{{x}_{4}}$•$\overrightarrow{{y}_{4}}$+$\overrightarrow{{x}_{5}}$•$\overrightarrow{{y}_{5}}$,Smin表示S所有可能取值中的最小值.則下列說法正確的有幾個( 。
①S有5個不同的值.    
②若$\overrightarrow{a}$⊥$\overrightarrow$,則Smin與$|{\overrightarrow a}$|無關(guān)
③若$\overrightarrow a∥\overrightarrow b$則Smin與$|{\overrightarrow b}$|無關(guān).
④若$|{\overrightarrow b}|>4|{\overrightarrow a}$|,則Smin>0
⑤若|$\overrightarrow b|=2|\overrightarrow a|,S{\;}_{min}=8|\overrightarrow a{|^2}$,則$\overrightarrow{a}$與$\overrightarrow$的夾角為$\frac{π}{3}$.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.河大校辦工廠生產(chǎn)的產(chǎn)品A的直徑均位于區(qū)間[110,118]內(nèi)(單位:mm).若生產(chǎn)一件產(chǎn)品A的直徑位于區(qū)間[110,112),[112,114),[114,116),[116,118]內(nèi)該廠可獲利分別為10,20,30,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品A中隨機抽取100件測量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求a的值,并估計該廠生產(chǎn)一件A產(chǎn)品的平均利潤;
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間[112,116)內(nèi)的產(chǎn)品中隨機抽取一個容量為5的樣本,再從樣本中隨機抽取兩件產(chǎn)品進(jìn)行檢測,求兩件產(chǎn)品中至少有一件產(chǎn)品的直徑位于區(qū)間[112,114)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列各式正確的是(x>0,y>0,z>0,a>0且a≠1)( 。
①${log_a}(x{y^2})=2{log_a}x•{log_a}y$;      
②${log_a}(x\sqrt{y})={log_a}x+2{log_a}y$;
③${log_a}\frac{xy}{z^3}={log_a}x+{log_a}y+\frac{1}{3}{log_a}z$;  
④${log_a}\frac{{\sqrt{xy}}}{z}=\frac{1}{2}{log_a}x+\frac{1}{2}{log_a}y+{log_a}z$.
A.①②B.①④C.③④D.都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.滿足條件{1,2}⊆M⊆{1,2,3,4,5}的集合M的個數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.下列給出的賦值語句中正確的是( 。
A.3=BB.A=B=2C.M=4D.x2+y2=1

查看答案和解析>>

同步練習(xí)冊答案