【題目】某軟件公司新開(kāi)發(fā)一款學(xué)習(xí)軟件,該軟件把學(xué)科知識(shí)設(shè)計(jì)為由易到難共12關(guān)的闖關(guān)游戲.為了激發(fā)闖關(guān)熱情,每闖過(guò)一關(guān)都獎(jiǎng)勵(lì)若干慧幣(一種網(wǎng)絡(luò)虛擬幣).該軟件提供了三種獎(jiǎng)勵(lì)方案:第一種,每闖過(guò)一關(guān)獎(jiǎng)勵(lì)80慧幣;第二種,闖過(guò)第一關(guān)獎(jiǎng)勵(lì)8慧幣,以后每一關(guān)比前一關(guān)多獎(jiǎng)勵(lì)8慧幣;第三種,闖過(guò)第一關(guān)獎(jiǎng)勵(lì)1慧幣,以后每一關(guān)比前一關(guān)獎(jiǎng)勵(lì)翻一番(即增加1倍).游戲規(guī)定:闖關(guān)者須于闖關(guān)前任選一種獎(jiǎng)勵(lì)方案.已知一名闖關(guān)者沖關(guān)數(shù)一定超過(guò)3關(guān)但不會(huì)超過(guò)9關(guān),為了得到更多的慧幣,他應(yīng)如何選擇獎(jiǎng)勵(lì)方案?

A.選擇第一種獎(jiǎng)勵(lì)方案B.選擇第二種獎(jiǎng)勵(lì)方案

C.選擇第三種獎(jiǎng)勵(lì)方案D.選擇的獎(jiǎng)勵(lì)方案與其沖關(guān)數(shù)有關(guān)

【答案】A

【解析】

設(shè)沖關(guān)數(shù)為,則,根據(jù)題意分別計(jì)算出三種方案獲得的慧幣,比較即可求解.

設(shè)沖關(guān)數(shù)為,三種方案獲得的慧幣為,

由題意可知:;,

當(dāng)時(shí),,,

故選擇第一種獎(jiǎng)勵(lì)方案.

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)大學(xué)先修課程,是在高中開(kāi)設(shè)的具有大學(xué)水平的課程,旨在讓學(xué)有余力的高中生早接受大學(xué)思維方式、學(xué)習(xí)方法的訓(xùn)練,為大學(xué)學(xué)習(xí)乃至未來(lái)的職業(yè)生涯做好準(zhǔn)備.某高中開(kāi)設(shè)大學(xué)先修課程已有兩年,兩年共招收學(xué)生2000人,其中有300人參與學(xué)習(xí)先修課程,兩年全校共有優(yōu)等生200人,學(xué)習(xí)先修課程的優(yōu)等生有60人.這兩年學(xué)習(xí)先修課程的學(xué)生都參加了考試,并且都參加了某高校的自主招生考試(滿分100分),結(jié)果如下表所示:

分?jǐn)?shù)

人數(shù)

20

55

105

70

50

參加自主招生獲得通過(guò)的概率

0.9

0.8

0.6

0.5

0.4

(1)填寫列聯(lián)表,并畫出列聯(lián)表的等高條形圖,并通過(guò)圖形判斷學(xué)習(xí)先修課程與優(yōu)等生是否有關(guān)系,根據(jù)列聯(lián)表的獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為學(xué)習(xí)先修課程與優(yōu)等生有關(guān)系?

優(yōu)等生

非優(yōu)等生

總計(jì)

學(xué)習(xí)大學(xué)先修課程

沒(méi)有學(xué)習(xí)大學(xué)先修課程

總計(jì)

(2)已知今年有150名學(xué)生報(bào)名學(xué)習(xí)大學(xué)先修課程,以前兩年參加大學(xué)先修課程學(xué)習(xí)成績(jī)的頻率作為今年參加大學(xué)先修課程學(xué)習(xí)成績(jī)的概率.

①在今年參與大學(xué)先修課程的學(xué)生中任取一人,求他獲得某高校自主招生通過(guò)的概率;

②設(shè)今年全校參加大學(xué)先修課程的學(xué)生獲得某高校自主招生通過(guò)的人數(shù)為,求.

參考數(shù)據(jù):

0.15

0.10

0.05

0.025

0.010

0.005

2.072

2.706

3.841

5.024

6.635

7.879

參考公式:,其中.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下表給出的是某城市年至年,人均存款(萬(wàn)元),人均消費(fèi)(萬(wàn)元)的幾組對(duì)照數(shù)據(jù).

年份

人均存款(萬(wàn)元)

人均消費(fèi)(萬(wàn)元)

1)試建立關(guān)于的線性回歸方程;如果該城市年的人均存款為萬(wàn)元,請(qǐng)根據(jù)線性回歸方程預(yù)測(cè)年該城市的人均消費(fèi);

2)計(jì)算,并說(shuō)明線性回歸方程的擬合效果.

附:回歸方程中斜率和截距的最小二乘估計(jì)公式分別為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)fx=|2x-1|+|x+m|

l)當(dāng)m=l時(shí),解不等式fx)≥3;

2)證明:對(duì)任意xR2fx)≥|m+1|-|m|

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著經(jīng)濟(jì)的發(fā)展,轎車已成為人們上班代步的一種重要工具.現(xiàn)將某人三年以來(lái)每周開(kāi)車從家到公司的時(shí)間之和統(tǒng)計(jì)如圖所示.

1)求此人這三年以來(lái)每周開(kāi)車從家到公司的時(shí)間之和在(時(shí))內(nèi)的頻率;

2)求此人這三年以來(lái)每周開(kāi)車從家到公司的時(shí)間之和的平均數(shù)(每組取該組的中間值作代表);

3)以頻率估計(jì)概率,記此人在接下來(lái)的四周內(nèi)每周開(kāi)車從家到公司的時(shí)間之和在(時(shí))內(nèi)的周數(shù)為,求的分布列以及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知非常數(shù)列滿足,若,則( )

A.存在,,對(duì)任意,,都有為等比數(shù)列

B.存在,,對(duì)任意,,都有為等差數(shù)列

C.存在,,對(duì)任意,都有為等差數(shù)列

D.存在,,對(duì)任意,,都有為等比數(shù)列

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正四棱柱中,底面邊長(zhǎng)為,側(cè)棱長(zhǎng)為4,、分別為棱、的中點(diǎn),;

1)求直線與平面所成角的大小;

2)求點(diǎn)到平面的距離

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,已知曲線的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為

Ⅰ)求曲線的普通方程與曲線的直角坐標(biāo)方程;

Ⅱ)設(shè)為曲線上的動(dòng)點(diǎn),求點(diǎn)上點(diǎn)的距離的最小值,并求此時(shí)點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)

1)當(dāng),證明;

2)如果函數(shù)有兩個(gè)極值點(diǎn),),且恒成立,求實(shí)數(shù)k的取值范圍.

3)當(dāng)時(shí),求函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案