6.設(shè)函數(shù)f(x)=ln(x2-x-12)的定義域為集合A,集合B=$\left\{{x|\frac{8}{x+2}>1}\right\}$.請你寫出一個不等式,使它的解集為∁UA∩B,并說明理由.

分析 根據(jù)函數(shù)和不等式的解法求出集合A,B,結(jié)合集合的基本運(yùn)算進(jìn)行求解即可.

解答 解:由x2-x-12>0得x>4或x<-3,即A=(-∞,-3)∪(4,+∞),
由$\frac{8}{x+2}$>1得$\frac{8}{x+2}$-1=$\frac{6-x}{x+2}$>0,即(x-6)(x+2)<0,即-2<x<6,
則B=(-2,6),
則∁UA=[-3,4],
UA∩B=(-2,4],
則對應(yīng)的不等式可以是$\frac{x-4}{x+2}$≤0.
因為分式不等式中分母不能為0,則-2取不到.

點(diǎn)評 本題主要考查集合的基本運(yùn)算,根據(jù)函數(shù)和不等式的解法求出集合A,B是解決本題的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線的左、右焦點(diǎn)為F1和F2,在左支上過點(diǎn)F1的弦AB的長為10,若2a=9,則△ABF2的周長為( 。
A.16B.26C.21D.38

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.定義:函數(shù)y=[x]為“下取整函數(shù)”,其中[x]表示不大于x的最大整數(shù);函數(shù)y=<x>為“上取整函數(shù)”,其中<x>表示不小于x的最小整數(shù);例如根據(jù)定義可得:[1.3]=1,[-1.3]=-2,<-2.3>=-2,<2.3>=3
(1)函數(shù)f(x)=<x•[x]>,x∈[-2,2];求$f({-\frac{3}{2}})$和$f({\frac{3}{2}})$;
(2)判斷(1)中函數(shù)f(x)的奇偶性;
(3)試用分段函數(shù)的形式表示函數(shù):y=[x]+<x>,(-1≤x≤1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.某工廠生產(chǎn)甲、乙、丙三種型號的產(chǎn)品,產(chǎn)品數(shù)量之比為2:3:5,現(xiàn)按型號用分層抽樣的方法隨機(jī)抽出容量為n的樣本,若抽到24件乙型產(chǎn)品,則n等于( 。
A.80B.70C.60D.50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.設(shè)數(shù)列{an}的前項n和為Sn,若對于任意的正整數(shù)n都有Sn=2an-3n.
(1)設(shè)bn=an+3,求證:數(shù)列{bn}是等比數(shù)列,并求出{an}的通項公式.
(2)求數(shù)列{nan}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知$f(x)=\left\{\begin{array}{l}-{x^2}+4x+2\;\;x≤0\\{x^2}+2x+2\;\;\;\;x>0\end{array}\right.$,若不等式f(x+a)>f(2a-x)在[a-1,a]上恒成立,則實數(shù)a的取值范圍是(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知集合A={x|x2-x-2<0,x∈R},集合B={x||x-2|≥1,x∈R},則A∩B={x|-1<x≤1,x∈R}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.為了在運(yùn)行右面的程序之后輸出y=2,輸入的x可以是(  ) 
A.0B.2C.0或2D.-1,0或2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.設(shè)函數(shù)f(x)=ex+$\frac{1}{2}$x-a(a∈R)(e為自然對數(shù)的底數(shù)),若存在x0∈[-1,0],使得f(f(x0))=x0,則實數(shù)a的取值范圍是[$\frac{1}{2}$(1+ln2),1].

查看答案和解析>>

同步練習(xí)冊答案