若,
,
不共線,對于空間任意一點
都有
,則
,
,
,
四點( )
A.不共面 | B.共面 | C.共線 | D.不共線 |
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)如圖,在多面體ABDEC中,AE平面ABC,BD//AE,且AC=AB=BC=AE=1,BD=2,F(xiàn)為CD中點。
(I)求證:EF//平面ABC;
(II)求證:平面BCD;
(III)求多面體ABDEC的體積。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,在平行六面體ABCD-A1B1C1D1中,底面是邊長為1的正方形,若∠A1AB=∠A1AD=60º,且A1A=3,則A1C的長為( )
A.![]() | B.![]() | C.![]() | D.![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
[2014·溫州質(zhì)檢]△ABC的頂點分別為A(1,-1,2),B(5,-6,2),C(1,3,-1),則AC邊上的高BD等于( )
A.5 | B.![]() | C.4 | D.2![]() |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在空間直角坐標(biāo)系中的點P(a,b,c),有下列敘述:
①點P(a,b,c)關(guān)于橫軸(x軸)的對稱點是;
②點P(a,b,c)關(guān)于yOz坐標(biāo)平面的對稱點為;
③點P(a,b,c)關(guān)于縱軸(y軸)的對稱點是;
④點P(a,b,c)關(guān)于坐標(biāo)原點的對稱點為.
其中錯誤的敘述個數(shù)是( )
A.1 |
B.2 |
C.3 |
D.4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
設(shè)平面α的法向量為(1,2,-2),平面β的法向量為(-2,-4,k),若α∥β,則k的值為( )
A.3 | B.4 | C.5 | D.6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
在空間直角坐標(biāo)系中,點M的坐標(biāo)是(4,7,6),則點M關(guān)于y軸的對稱點在坐標(biāo)平面xOz上的射影的坐標(biāo)為( )
A.(4,0,6) |
B.(-4,7,-6) |
C.(-4,0,-6) |
D.(-4,7,0) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:單選題
如圖,正方形ACDE與等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分別是線段AE,BC的中點,則AD與GF所成的角的余弦值為( )
A.![]() | B.-![]() | C.![]() | D.-![]() |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com